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Abstract

Manufactured artefacts such as major aircraft components (wings,
fuselage, tailplane) are defined at the concept and design stages us-
ing a variety of methods, namely Computer Aided Design (CAD),
NACA aerofoil definitions or purely analytical descriptions (polyno-
mials, splines, etc.). At the end of the design and development the
final manufactured artefact can only be verified if it is measured. The
measured data is always a set of discrete points commonly described
as a point cloud (x, y, z coordinates). Our goal here is to detect the
faults from point cloud and reconstruct the measured object with as
few points as possible. We can then insert this minimal reconstruction
into CAD, and use analytical methods, to verify if the design intent
was achieved: that is if the faults interfere with flight.

1 Introduction

To work from a simple set up, we assume that if the wing was manufactured
correctly it would be the plane y = 0. This can easily be achieved if there
exists an analytic description of what the wing should be, this is called the
design intent. We say we unwrap the data by applying the inverse of the
design intent to the real measured data of the manufactured wing. The
real measured data is called the point cloud as it is a set of points with
no regularity or even spacing. In this unwrapped configuration points that
do not have y = 0 are due to manufacturing errors. We further simplify
by working only in 2D, where if the wing was manufactured correctly it
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would be the line y = 0. This 2D data is often called a slice of the point
cloud. The method we will describe below was applied to the data after the
unwrapping process. The basic idea is to build a set of vectors, B, or fault
vectors, that represent the faults we wish to find. we take the unwrapped
data and project it onto these fault vectors in B and then choose the fault
vectors with the largest contribution to the projection. Finally we re-project
the original unwrapped data onto these important vectors from B. Hopefully
at this point we will have a good representation of the wing along with the
information of what and where are the faults. It is possible that to apply an
analogous method to the full 2D surface wing could be infeasible, however,
if we describe the faults on an arbitrary slice it should be possible to stitch
together these slices to describe the total wing Faults.

2 A Simple Example

To design these fault vectors we need to first recognize what the faults will
look like after the unwrapping. If the wing was produced with no flaws
whatsoever the unwrapped data slice, to be referred to as data from now on,
would be the line y = 0. We being with a simple example, we imagine that
two plates were joined together with a slight error, but both were angled
correctly, then the unwrapping would produce a step, see Figure 1 below.
Note that errors are introduced in the measurement, which at times can
be on the same scale as the fault we wish to find. To locate this step we
construct a discrete basis for all possible steps and then project the data
onto these steps. An example of a few of these basis can be seen in Figure 2.
Mathematical speaking, each discrete step will be represented by bn0 a vector
in RN , where N are the number of points in the data slice, such that

bn0 (m) :=

{
c0 if m ≥ n,

0 if m〈n,
(1)

where c0 is a constant that can de adjusted. Let f represent the data, then
to find a best fit with these step basis’ we need to find αn0 ’s such that

min
αn
0

F (α1
0, α

2
0, . . . , α

N
0 ), (2)

where

F = ‖f −
N∑
k=0

αn0b
n
0‖, (3)

2



(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

 

 

Manufactured Wing

Wing Design Intent

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.01

−0.005

0

0.005

0.01

0.015

0.02

F
a

u
lt
 h

e
ig

h
t

Position on slice

 

 

Unwrapped Fault

Unwrapped Design intent

Figure 1: (a) shows both the wing design intent with the measurement of
the manufactured wing, they are almost indistinguishable from one another,
(b) shows the unwrapped design intent and the measured wing.

and N = number of data points. We call the αn0 ’s the coefficients of the step
basis. This is accomplished by finding the critical point, i.e. find αn0 such
that

∂F

∂αn0
= 0, for every n from 1 to N . (4)
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Figure 2: the balls represent the actual values of the step vectors.

Then we say that
∑

n α
n
0b

n
0 is the projection of f onto the step vectors. See

Figure 3 for an example of the αn0 ’s distribution for the fault in Figure 1.

Clearly in this case the most relevant coefficient is α
N/2
0 ≈ 0.027, the step

that starts at x = 2, thus we choose only this coefficient and plot α
N/2
0 b

N/2
0

with the original fault in Figure 4.
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Figure 3: the value of the vector αn0 × x.

Note that for this example, if we were to remove the errors of the mea-
surement and compare the real fault with the projection of the measured
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Figure 4: the projection of the measured fault compared with the measured
fault itself.

fault: they would be almost identical, that is, taking only the most relevant
coefficients of the projection we somewhat ignore the error measurements.
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3 The Minimal Projection Method

The faults we wish to detect include plates being joined incorrectly, bolts
and an unwated waveiness. To capture this range of faults we shall introduce
polynomial fault vectors to be used in the projection method. Let the slice
data be composed of the points {(x0, f(x0)), (x1, f(x1)), . . . , (xN , f(xN))} =
(x, f(x)) and N is the number of points. Then the order-k fault vector
starting on the xn is given by

bnk(m) :=

{
ck(xm − xn)k if m ≥ n,

0 if m〈n,
(5)

where ck is such that ‖bN/2k ‖ = 1. Later on we shall see that ck must not
vary with k so as to accurately locate the position of the faults, it will be a
result of all the fault vectors of order-k having the same growth from their
“starting” point, for example the step vectors will have the same height. For
the record, ck will be the typical L2 norm of the vector

ck(m) :=

{
(xm − xN/2)k if m ≥ N/2,

0 if m〈N/2.
(6)

Given these vectors, one may deduce from the introduction the following
method: project the data onto step vectors bn0 ’s, then choose only the most
relevant coefficients βn0 ’s, store them and let p0 ←

∑
n β

n
0b

n
0 , then remove

this projection from the data f ← f − p0. Now again project this remainder
data f onto the fault vectors of order-1, the line basis, choose only the most
relevant coefficients βn1 ’s, store them and so on and so forth. At the end
of this process all you need do is consult the coefficients βnk ’s to find what
faults are present and their location. The major flaw in this method lies in
attempting to carefully define “the most relevant coefficient”, for the bnk ’s
are not linearly dependent: typically we will need basis vectors up to k = 4,
which would give us 4N fault vectors to represent a N -dimensional space.
So the same fault will be clearly detected by different order fault vectors,
it would then be unclear as to what criteria we could use to determine if a
coefficient αnk is relevant enough. Another crucial feature is that we want
the least number of coefficients to characterize the faults. To summarize, we
want to represent the data in terms of all these basis vectors while choosing
only the most relevant coefficients, mathematically speaking, we want to find
αnk ’s such that,

min
αn
k

F (α1
0, α

2
0, . . . , α

N
K), (7)
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where

F (α1
0, α

2
0, . . . , α

N
K) =

∥∥∥ N∑
n=1

K∑
k=0

αnkb
n
k − f

∥∥∥2 + ω
∥∥∥ N∑
n=1

K∑
k=0

αnk

∥∥∥2 (8)

where ω is a weight that can be chosen. To minimize we equate

∂F

∂αji
= 0

for every i and j, resulting in

∂F

∂αji
=〈bji ,

N∑
n=1

K∑
k=0

αnkb
n
k − f〉+ ωαji = 0 =⇒

N∑
n=1

K∑
k=0

(
ωδikδ

jn + 〈bji ,bnk〉
)
αnk = 〈bji , f〉, (9)

where δik and δik equal 1 if i = k and zero otherwise. If we denote

α = (α1
0, α

2
0, . . . , α

N
0 , α

1
1, α

2
1, . . . , α

N
1 , α

1
2, . . . , α

N
K)T ,

then equation (9) can be rewritten as a matrix equation,(
BTB + ωI

)
α = BTf, (10)

where,

B =
(
b1
0 b2

0 . . . bN0 b1
1 b2

1 . . . bN1 b1
2 . . . bNK

)
, (11)

and I is a KN -dimensional identity matrix. Note that there is always a ω
large enough such that M is invertible. For the fault vectors we have defined
in equations (5) choosing ω = 1 will guarantee that M is invertible. Hence,

α =
(
BTB + ωI

)−1
BTf. (12)

If B’s colomns was composed only of fault vectors of order-k and ω = 0, then
the above formula would give the coefficients for the projection of the data
onto the order-k fault vectors.

Let us examine the distribution of the αji ’s for the data given in Figure 5.
Using equation (12) we can find α, shown in Figure 6. Note that different
fault vectors perceive the same events. We choose the most representative
coefficients as being the largest local maximum of vector |α|, the absolute
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Figure 5: A Fault example.
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αn
0 the step coefficients

αn
1 the line coefficients

Figure 6: step and line fault Coefficients, where the line coefficients have
been magnified 20 so as to easily see them.

value of the components of the coefficient vector α, this is done separately
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Reconstructed Fault

Figure 7: fault and reconstructed fault.

for the coefficients of each fault vector order, then we project the data onto
the fault vectors of these coefficients. Note, if ck’s in equations (5) were
not constants then the critical points in Figure 6 would be dislocated and
would not represent the position of the fault. The result, which we call the
reconstructed fault is shown in Figure 7 below.

When measurement errors are present it is necessary to use higher order
fault vectors, defined in equations (5), to obtain better results. Figure 8
shows an example of a recontructed fault where the data include measurement
errors. When dealing with measurement errors possible the best procedure
would be to smooth out the data, though we can apply the method directly
to the data.

For the minimal projection method presented below let,

K is the largest order fault vector defined by equations (5),

Mk the number of representative coefficients for the fault vectors of order-k,

|αk| = (|α1
k|, |α2

k|, . . . , |αNk |),

then the method is illustrated by the algorithm below,
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Fault with errors

Reconstructed Fault

Figure 8: fault with measurement errors and reconstructed fault.

Minimal Projection Method
1. Choose K.
2. Choose each Mk for k from 1 to K.
3. For data f use equation (12) to obtain α.
4. Let βk be the Mk largest local maximum of |αk| .
5. Let Pf be the Projection of f onto the fault vectors of all the βk’s.
6. Check that Pf accurately approximates f , if not increase the Mk’s

that need more representatives and go back to item 4.
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4 An Example in Proportion

With the help of Dr. Richard Burguete we designed some synthetic data that
is closer to the scales and possible events that occur on a slice of measured
data from a wing. The chosen data imitates a bolt head, a undesired waviness
and a misaligned plate see Figure 9. If we consider the extension of this slice
to be 40cm then: the bolt head protrudes 0.04mm above the plate, the wave’s
amplitude is 0.04mm and the plates are misaligned by 0.027mm. We have
used only 1500 points on the slice so that there are 10 measured points on
the bolt’s head.
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Figure 9: synthetic data with a bolt head, a wave and a misalignment of two
plates.

We have modelled the measurement errors by Gaussian white noise with
an average amplitude equal to a third of the bolt head height. Now we
apply the minimal projection method to this data, that contains the mea-
surement errors, using fault vectors up to order-5, defined by equations 5,
and choose the 5 most representative coefficients for each order of fault vec-
tor, i.e. M0 = M1 = M2 = M3 = M4 = M5 = 5. We compare the output of
the method (reconstructed data), the data and the original fault in Figure 10
and onwards.
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Figure 10: the green line is the fault, the blue is the measured data and red
the output of the method.

7 8 9 10 11 12 13 14 15 16
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

F
a
u

lt
 H

e
ig

h
t

Surface Position

 

 

Fault
Fault with errors
Reconstructed Fault

12



11 11.5 12 12.5 13 13.5 14 14.5 15 15.5
−8

−6

−4

−2

0

2

4

6

8

x 10
−3

F
a
u

lt
 H

e
ig

h
t

Surface Position

 

 

Fault
Fault with errors
Reconstructed Fault

22 24 26 28 30 32 34 36 38
−0.04

−0.02

0

0.02

F
a
u

lt
 H

e
ig

h
t

Surface Position

 

 

Fault
Fault with errors
Reconstructed Fault

13



26 27 28 29 30 31 32 33 34 35
−10

−8

−6

−4

−2

0

2

4

6

x 10
−3

F
a
u

lt
 H

e
ig

h
t

Surface Position

 

 

Fault
Fault with errors
Reconstructed Fault

5 Conclusion

We feel that this minimal projection method works very well and we pre-
dict it would have better results if the measured data was to be treated to
smooth out these error measurements. Another possible method is to project
the data onto the fault vector of different orders, one-by-one, record all the
local minimums and maximums of the coefficients αkn’s called β, then finally
project the data onto the fault vectors of all coefficients in β.
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