
A robust anisotropic hyperelastic formulation for the

modelling of soft tissue

D.R. Nolana, A.L. Gowerb, M. Destradeb, R.W. Ogdenc, J.P. McGarrya,∗

aBiomedical Engineering, National University of Ireland, Galway, Galway, Ireland
bSchool of Mathematics, Statistics and Applied Mathematics, National University of

Ireland, Galway, Galway, Ireland
cSchool of Mathematics and Statistics, University of Glasgow, Glasgow, Scotland

Abstract

The Holzapfel–Gasser–Ogden (HGO) model for anisotropic hyperelas-
tic behaviour of collagen fibre reinforced materials was initially developed
to describe the elastic properties of arterial tissue, but is now used ex-
tensively for modelling a variety of soft biological tissues. Such materials
can be regarded as incompressible, and when the incompressibility condi-
tion is adopted the strain energy Ψ of the HGO model is a function of one
isotropic and two anisotropic deformation invariants. A compressible form
(HGO-C model) is widely used in finite element simulations whereby the
isotropic part of Ψ is decoupled into volumetric and isochoric parts and the
anisotropic part of Ψ is expressed in terms of isochoric invariants. Here,
by using three simple deformations (pure dilatation, pure shear and uniax-
ial stretch), we demonstrate that the compressible HGO-C formulation does
not correctly model compressible anisotropic material behaviour, because the
anisotropic component of the model is insensitive to volumetric deformation
due to the use of isochoric anisotropic invariants. In order to correctly model
compressible anisotropic behaviour we present a modified anisotropic (MA)
model, whereby the full anisotropic invariants are used, so that a volumetric
anisotropic contribution is represented. The MA model correctly predicts
an anisotropic response to hydrostatic tensile loading, whereby a sphere de-
forms into an ellipsoid. It also computes the correct anisotropic stress state
for pure shear and uniaxial deformation. To look at more practical appli-
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cations, we developed a finite element user-defined material subroutine for
the simulation of stent deployment in a slightly compressible artery. Signif-
icantly higher stress triaxiality and arterial compliance are computed when
the full anisotropic invariants are used (MA model) instead of the isochoric
form (HGO-C model).

Keywords: Anisotropic, Hyperelastic, Incompressibility, Finite element,
Artery, Stent

Nomenclature

I – identity tensor
Ψ – Helmholtz free-energy (strain-energy) function
Ψvol – volumetric contribution to the free energy
Ψaniso – anisotropic contribution to the free energy
Ψiso – isotropic contribution to the isochoric free energy
Ψaniso – anisotropic contribution to the isochoric free energy
σ – Cauchy stress
σ′ – deviatoric Cauchy stress
q – von Mises equivalent stress
σhyd – hydrostatic (pressure) stress
F – deformation gradient
J – determinant of the deformation gradient; local ratio of volume change
C – right Cauchy–Green tensor
I1 – first invariant of C
I4,6 – anisotropic invariants describing the deformation of reinforcing fibres
F – isochoric portion of the deformation gradient
C – isochoric portion of the right Cauchy–Green deformation tensor
I1 – first invariant of C
I4,6 – isochoric anisotropic invariants
a0i, i = 4, 6 – unit vector aligned with a reinforcing fibre in the reference
configuration
ai, i = 4, 6 – updated (deformed) fibre direction (= Fa0i)
κ0 – isotropic bulk modulus
µ0 – isotropic shear modulus
ki, i = 1, 2 – anisotropic material constants
ν – isotropic Poisson’s ratio
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Bold uppercase symbols represent second order tensors, bold lowercase sym-
bols represent vectors and un-bold symbols represent scalars.

1. Introduction

The anisotropic hyperelastic constitutive model proposed by Holzapfel et
al. (2000) (henceforth referred to as the HGO model) is used extensively to
model collagen fibre-reinforced biological materials, even more so now that it
has been implemented in several commercial and open-source Finite Element
(FE) codes for the simulation of soft tissue elasticity.

The constitutive equation builds upon previously published transversely
isotropic constitutive models (e.g. Weiss et al. (1996)) and reflects the struc-
tural components of a typical biological soft tissue, and hence its strain-
energy density consists of two mechanically equivalent terms accounting for
the anisotropic contributions of the reinforcing fibre families, in addition
to a term representing the isotropic contribution of the ground matrix in
which the fibres are embedded. Also, it assumes that the collagen fibres do
not support compression, and hence they provide a mechanical contribution
only when in tension (this may be taken care of by pre-multiplying each
anisotropic term with a Heaviside, or “switching”, function).

For the original incompressible HGO model the strain energy Ψ is ex-
pressed as a function of one isochoric isotropic deformation invariant (denoted
I1) and two isochoric anisotropic invariants (denoted I4 and I6). A Lagrange
multiplier is used to enforce incompressibility (Holzapfel et al., 2000). Once
again it should be stressed that the original HGO model is intended only for
the simulation of incompressible materials.

A modification of the original HGO model commonly implemented in fi-
nite element codes entails the replacement of the Lagrange multiplier penalty
term with an isotropic hydrostatic stress term that depends on a user speci-
fied bulk modulus. This modification allows for the relaxation of the incom-
pressibility condition and we therefore refer to this modified formulation as
the HGO-C (compressible) model for the remainder of this study.

The HGO-C model has been widely used for the finite element simulation
of many anisotropic soft tissues. For example, varying degrees of compress-
ibility have been reported for cartilage in the literature (e.g. Guilak et al.
(1995); Smith (2001)). It has been modelled as a compressible material using
the HGO-C model (e.g. Peña et al. (2007) used a Poisson’s ratio, ν = 0.1
and Pérez del Palomar et al. (2006) used ν = 0.1 and ν = 0.4). To date,
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material compressibility of arterial tissue has not been firmly established.
Incompressibility was assumed by the authors of the original HGO model
and in subsequent studies (e.g. Kiousis et al. (2009)). However many studies
model arteries as compressible or slightly compressible (e.g. Cardoso et al.
(2014) ν = 0.33− 0.43 and Iannaccone et al. (2014) ν = 0.475). In addition
to arterial tissue the nucleus pulposus of an inter-vertebral disc has been
modelled as a compressible anisotropic material using the HGO-C model
(e.g. (Maquer et al., 2014) ν = 0.475). Furthermore the HGO-C formulation
has been used to simulate growth of anisotropic biological materials, where
volume change is an intrinsic part of a bio-mechanical process (e.g. (Huang
et al., 2012) ν = 0.3). However, the enforcement of perfect incompressibility
may not be readily achieved in numerical models. As an example, the fi-
nite element solver Abaqus/Explicit assigns a default Poisson’s ratio of 0.475
to ”incompressible” materials in order to achieve a stable solution (Abaqus,
2010) and in this case the HGO-C model must be used (e.g. Conway et
al. (2012); Famaey et al. (2012)). Despite the widespread use of the HGO-
C model, its ability to correctly simulate anisotropic compressible material
behaviour has not previously been established.

• The first objective of this study is to demonstrate that the HGO-C
formulation does not correctly model an anisotropic compressible hy-
perelastic material.

Recently, Vergori et al. (2013) showed that under hydrostatic tension, a
sphere consisting of a slightly compressible HGO-C material expands into a
larger sphere instead of deforming into an ellipsoid. It was suggested that this
effectively isotropic response is due to the isochoric anisotropic invariants I i
being used in the switching function instead of the full invariants Ii, i = 4, 6.
However, in the current paper we show that the problem emerges fundamen-
tally because there is no dilatational contribution to the anisotropic terms of
Ψ. In fact, modifying only the “switching criterion” for fibre lengthening is
not sufficient to fully redress the problem.

• The second objective of the study is to implement a modification of the
HGO-C model so that correct anisotropic behaviour of compressible
materials is achieved.

This modified anisotropic (MA) model uses the full form of the anisotropic
invariants and through a range of case studies we show this leads to the
correct computation of stress in contrast to the widely used HGO-C model.

4



The paper is structured as follows. In Section 2 we demonstrate and high-
light the underlying cause of the insensitivity of the anisotropic component
of the HGO-C model to volumetric deformation in compressible materials.
We demonstrate that the modification of the model to include the full form
of the anisotropic invariants corrects this deficiency. In Section 3 we show
how the HGO-C model yields unexpected and unphysical results for pure in-
plane shear and likewise in 4 for simple uniaxial stretching, in contrast to the
modified model. We devote Section 5 to two Finite Element biomechanics
case studies, namely pressure expansion of an artery and stent deployment in
an artery, and illustrate the significant differences in computed results for the
HGO-C model and the modified model. Finally, we provide some concluding
remarks and discussion points in Section 6.

2. Theory: Compressible Anisotropic Hyperelastic Constitutive
Models

2.1. HGO-C Model for Compressible Materials

The original HGO model is intended for incompressible materials. How-
ever a variation of the HGO model whereby a bulk modulus is used instead
of a penalty term has been implemented in a number of FE codes. Several
authors have used this formulation t model compressible anisotropic materi-
als bu using a relatively low value of bulk modulus. An important objective
of this paper is to highlight that this HGO-C formulation does not correctly
model compressible anisotropic material behaviour.

The kinematics of deformation are described locally in terms of the defor-
mation gradient tensor, denoted F, relative to some reference configuration.
The right Cauchy–Green tensor is defined by C = FTF, where T indicates
the transpose of a second-order tensor.

Hyperelastic constitutive models used for rubber-like materials often split
the local deformation into volume-changing (volumetric) and volume-preserving
(isochoric, or deviatoric) parts. Accordingly the deformation gradient F is
decomposed multiplicatively as follows:

F =
(
J

1
3 I
)
F, (1)

where J is the determinant of F. The term in the brackets represents the
volumetric portion of the deformation gradient and F is its isochoric portion,
such that det(F) = 1 at all times.
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Suppose that the material consists of an isotropic matrix material within
which are embedded two families of fibres characterized by two preferred
directions in the reference configuration defined in terms of two unit vectors
a0i, i = 4, 6. With C, J and a0i are defined the invariants

I1 = tr(C), I4 = a04 · (Ca04), I6 = a06 · (Ca06), (2)

I1 = J−2/3I1, I4 = J−2/3I4, I6 = J−2/3I6, (3)

where I i (i = 1, 4, 6) are the isochoric counterparts of Ii. The HGO model
proposed by Holzapfel et al. (2000) for collagen reinforced soft tissues ad-
ditively splits the strain energy Ψ into volumetric, isochoric isotropic and
isochoric anisotropic terms,

Ψ (C, a04, a06) = Ψvol (J) + Ψiso

(
C
)

+ Ψaniso

(
C, a04, a06

)
, (4)

where Ψiso and Ψaniso are the isochoric isotropic and isochoric anisotropic
free-energy contributions, respectively, and C = J−2/3C is the isochoric right
Cauchy–Green deformation tensor.

In numerical implementations of the model (Abaqus, 2010; ADINA, 2005;
Gasser et al., 2002), the volumetric and isochoric isotropic terms are repre-
sented by the slightly compressible neo-Hookean hyperelastic free energy

Ψvol(J) =
1

2
κ0 (J − 1)2 , Ψiso(C) =

1

2
µ0(I1 − 3), (5)

where κ0 and µ0 are the bulk and shear moduli, respectively, of the soft
isotropic matrix. Of course one may write (5) in terms of the full invariants
also, using the results from (3).

The isochoric anisotropic free-energy term is prescribed as

Ψaniso

(
C, a04, a06

)
=

k1
2k2

∑
i=4,6

{exp[k2
(
I i − 1

)2
]− 1}, (6)

where k1 and k2 are positive material constants which can be determined
from experiments.

For a general hyperelastic material with free energy Ψ the Cauchy stress
is given by

σ =
1

J
F
∂Ψ

∂F
. (7)
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For the Cauchy stress derived from Ψ above, we have the decomposition
σ = σvol + σiso + σaniso, where

σvol = κ0(J − 1)I, σiso = µ0J
−1 (B− 1

3
I1I
)
, (8)

with B = FF
T

, and

σaniso = 2k1J
−1
∑
i=4,6

(
I i − 1

)
exp[k2

(
I i − 1

)2
](ai ⊗ ai − 1

3
I iI), (9)

where ai = Fa0i. This slightly compressible implementation is referred to as
the HGO-C model henceforth.

The original incompressible HGO model by Holzapfel et al. (2000) speci-
fied that for arteries the constitutive formulation should be implemented for
incompressible materials. In that limit, κ0 → ∞, (J − 1) → 0 while the
product of these two quantities becomes an indeterminate Lagrange multi-
plier, p, and the volumetric stress assumes the form, σvol = −pI. Indeed the
original incompressible HGO model can equally be expressed in terms of the
full invariants I4 and I6 (with J → 1) (e.g., Holzapfel et al. (2004)).

However, in the case of the HGO-C implementation, if κ0 is not fixed
numerically at a large enough value, then slight compressibility is intro-
duced into the model. The key point of this paper is that the isochoric
anisotropic term Ψaniso defined in (6) does not provide a full representation
of the anisotropic contributions to the stress tensor for slightly compress-
ible materials. In Section 2.4 we introduce a simple modification of the
anisotropic term to account for material compressibility.

2.2. Pure dilatational deformation

First we consider the case of the HGO-C material subjected to a pure
dilatation with stretch λ = J1/3, so that

F = λI, C = λ2I, J = λ3. (10)

We expect that an anisotropic material requires an anisotropic stress state to
maintain the pure dilatation. However, calculation of the invariants Ii and
I i yields

Ii = a0i · (Ca0i) = λ2, I i = J−2/3Ii = 1, i = 4, 6, (11)
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so that while Ii is indeed the square of the fibre stretch and changes with
the magnitude of the dilatation, its isochoric counterpart I i is always unity.
Referring to (9), it is clear that the entire anisotropic contribution to the
stress (7) disappears (i.e. σaniso ≡ 0), and the remaining active terms are
the isotropic ones. Thus, under pure dilatation, the HGO-C model computes
an entirely isotropic state of stress.

2.3. Applied hydrostatic stress

Now we investigate the reverse question: what is the response of the
HGO-C material to a hydrostatic stress,

σ = σI, (12)

where σ > 0 under tension and σ < 0 under pressure? In an anisotropic
material, we expect the eigenvalues of C, the squared principal stretches,
λ21, λ

2
2, λ

2
3 say, to be distinct. Hence, if the material is slightly compressible,

then a sphere should deform into an ellipsoid (Vergori et al., 2013) and a
cube should deform into a hexahedron with non-parallel faces (Nı́ Annaidh
et al., 2013b).

However, in the HGO-C model the Ψaniso contribution is switched on only
when I i (not Ii) is greater than unity. Vergori et al. (2013) showed that in
fact I i is always less than or equal to one in compression and in expansion
under hydrostatic stress, so that the HGO-C response is isotropic, contrary to
physical expectations. Then we may ask if removal of the switching function
circumvents this problem so that anisotropic response is obtained.

With the fibres taken to be mechanically equivalent and aligned with
a04 = (cos Θ, sin Θ, 0) and a06 = (cos Θ,− sin Θ, 0) in the reference config-
uration, we have, by symmetry, I6 = I4 and I6 = I4 and Ψ6 = Ψ4, where
the subscripts 4 and 6 on Ψ signify partial differentiation with respect to
I4 and I6, respectively. Similarly, in the following the subscript 1 indicates
differentiation with respect to I1. For this special case, Vergori et al. (2013)
showed that the stretches arising from the application of a hydrostatic stress
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are

λ1 = J1/3

[
Ψ1(Ψ1 + 2Ψ4 sin2 Θ)

(Ψ1 + 2Ψ4 cos2 Θ)2

] 1
6

,

λ2 = J1/3

[
Ψ1(Ψ1 + 2Ψ4 cos2 Θ)

(Ψ1 + 2Ψ4 sin2 Θ)2

] 1
6

,

λ3 = J1/3

[
Ψ

2

1 + 2Ψ1Ψ4 + Ψ
2

4 sin2 2Θ

Ψ
2

1

] 1
6

. (13)

Explicitly,

Ψ1 =
∂Ψ

∂I1
=

1

2
µ0, Ψ4 =

∂Ψ

∂I4
= k1(I4 − 1) exp[k2

(
I4 − 1

)2
]. (14)

Looking at (13), we see that there is a solution to the hydrostatic stress
problem where the stretches are unequal, so that a sphere deforms into an
ellipsoid. However, there is also another solution: that for which I4 ≡ 1, in
which case, Ψ4 ≡ 0 by the above equation, and then λ1 = λ2 = λ3 = J1/3 by
(13). Thus, a sphere then deforms into another sphere.

Of those (at least) two possible paths, FE solvers converge upon the
isotropic solution. One possible explanation for this may be that the ini-
tial computational steps calculate strains in the small-strain regime. In that
regime, Vergori et al. (2013) showed that all materials with a decoupled vol-
umetric/isochoric free-energy behave in an isotropic manner when subject
to a hydrostatic stress. Hence the first computational step brings the de-
formation on the isotropic path, and I4 = 1 then, and subsequently. In
Section 2.2 and Section 2.3 we have thus demonstrated that the use of an
isochoric form of the anisotropic strain energy Ψaniso from the HGO model
in the HGO-C model cannot yield a correct response to pure dilatation or
applied hydrostatic stress.

2.4. Modified Anisotropic Model for Compressible Materials

In order to achieve correct anisotropic behaviour for compressible ma-
terials we introduce a modification to the anisotropic term of the HGO
model, whereby the anisotropic strain energy is a function of the ‘total’ right
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Cauchy–Green deformation tensor C, rather than its isochoric part C, so
that

Ψ (J,C, a04, a06) = Ψvol (J) + Ψiso(J,C) + Ψaniso(C, a04, a06), (15)

where the expressions for strain energy density terms Ψvol and Ψiso are
the same as those in (5), and

Ψaniso (C, a04, a06) =
k1
2k2

∑
i=4,6

{exp[k2 (Ii − 1)2]− 1}. (16)

This modification to the HGO-C model is referred to as the modified anisotropic
(MA) model hereafter. Combining (5), (15) and (16), the Cauchy stress
for the MA model is determined using (7) and the decomposition σ =
σvol + σiso + σaniso resulting in the expression:

σ = κ0(J−1)I+µ0J
−5/3 (B− 1

3
I1I
)

+2k1
∑
i=4,6

(Ii − 1) exp[k2(Ii − 1)2]ai⊗ai.

(17)
where ai = Fa0i, i = 4, 6. Now it is easy to check that in the cases of

a pure dilatation and of a hydrostatic stress, the MA model behaves in an
anisotropic manner, because the term Ii − 1 6= 0 and hence Ψaniso 6= 0 and
σaniso 6= 0. This resolves the issues identified above for the HGO-C model.

We have developed a user-defined material model (UMAT) Fortran sub-
routine to implement the MA formulation for the Abaqus/Standard FE soft-
ware. The FE implicit solver requires that both the Cauchy stress and the
consistent tangent matrix (material Jacobian) are returned by the subrou-
tine. Appendix A gives the details of the consistent tangent matrix.

We have used the above subroutine to repeat the simulations of expansion
of a sphere under hydrostatic tension of Vergori et al. (2013), this time using
the MA formulation. Again two families of fibres are assumed, lying in the
(1, 2) plane and symmetric about the 1 -axis (the sphere and axes are shown
in Figure 1A). The displacements of points on the surface of the sphere at the
ends of three mutually orthogonal radii with increasing applied hydrostatic
tension are shown in Figure 1B. Clearly the sphere deforms into an ellipsoid
with a major axis oriented in the 3-direction and a minor axis oriented in
the 1-direction, confirming the simulation of orthotropic material behaviour.
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Figure 1: A) Schematic of an undeformed sphere highlighting three radii on orthogo-
nal axes, 1-2-3, centred at the sphere origin. Two families of fibres are contained in the
(1, 2) plane and symmetric about the 1-axis. B) Computed (deformed/undeformed) ratios
(r/r0) of the orthogonal radii for both MA and HGO-C models versus the ratio σhyd/σ

max
hyd .

Note that the deformation computed for the HGO-C model incorrectly remains spheri-
cal. C) Deformed ellipsoidal shape computed for the MA model; contours illustrate the
inhomogeneous distribution of stress triaxiality (σhyd/q) throughout the deformed body.

The distribution of stress triaxiality in the deformed ellipsoid, measured by
σhyd/q, is shown in Figure 1C, where σhyd ≡ tr(σ)/3 is the hydrostatic

stress and q ≡
√

3/2σ′ : σ′ is the von Mises equivalent stress, σ′ being the
deviatoric Cauchy stress tensor. Clearly an inhomogeneous stress state is
computed in the deformed body.

The results shown in Figure 1 contrast sharply with the equivalent simu-
lations using the HGO-C model (Vergori et al., 2013) superimposed in Figure
1B for comparison. In that case a similar fibre-reinforced sphere is shown to
deform into a larger sphere with a homogeneous stress distribution, indicative
of isotropic material behaviour.

3. Analysis of Pure Shear

A pure dilatation and a hydrostatic stress each represent a highly ideal-
ized situation, unlikely to occur by themselves in soft tissue in vivo. This
section highlights the unphysical behaviour can also emerge for common
modes of deformation if the anisotropic terms are based exclusively on the
isochoric invariants. Considering once again the general case of a compress-
ible anisotropic material, we analyse the response of the HGO-C and MA
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models to pure in-plane shear. Regarding the out-of-plane boundary condi-
tions, we first consider the case of plane strain (Section 3.1). Even though
this deformation is entirely isochoric the HGO-C model yields incorrect re-
sults. We then consider the case of plane stress (Section 3.2), and again
demonstrate that the HGO-C model yields incorrect results. By contrast,
we show that the MA model computes a correct stress state for all levels of
compressibility and specified deformations. In the following calculations we
assume a shear modulus, µ0 = 0.05 MPa and anisotropic material constants
k1 = 1 MPa and k2 = 100.

3.1. Plane strain pure shear

With restriction to the (1, 2) plane we now consider the plane strain de-
formation known as pure shear, maintained by the application of a suitable
Cauchy stress. In particular, we take the deformation gradient for this de-
formation to have components

F =


√
F 2
12 + 1 F12 0

F12

√
F 2
12 + 1 0

0 0 1

 , (18)

where F12 is a measure of the strain magnitude. Figure 2A depicts the defor-
mation of the (1, 2) square cross section of a unit cube, which deforms into
a parallelogram symmetric about a diagonal of the square. The deformation
corresponds to a stretch λ =

√
F 2
12 + 1 +F12 along the leading diagonal with

a transverse stretch λ−1 =
√
F 2
12 + 1−F12. We can think of the deformation

arising from displacement components applied to the vertices of the square,
as indicated in Figure 2A. Two families of fibres, with reference unit vectors
a04 and a06 are assumed to lie in the (1, 2) plane, as illustrated in Figure 2A,
oriented with angles ±θ to the 1 axis. We perform some calculations for a
range of fibre orientations for each of the HGO-C and MA models.

First we note that although, for this specific case, the free energies of
the HGO-C and the MA models coincide (because J = 1 and hence I4 =
I4), the corresponding stress tensors are very different. This is due to the
“deviatoric” form of the anisotropic stress contribution that emerges for the
HGO-C model, as in the final term of (9), compared with the final term of
(17). It gives rise to a significant negative (compressive) out-of-plane stress
component σ33 which is comparable in magnitude to σ12, as shown in Figure
2B. Such a negative stress is anomalous in the sense that for large κ0 the
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Figure 2: A) Schematic illustrating the kinematics of the pure shear deformation of the
(1, 2) section of a unit cube. Note the rotated coordinate system (1′, 2′), orientated at 45◦

to the (1, 2) axes, used to specify the vertex displacement components u1′ and u2′ . Note
also the vectors a0i, i = 4, 6, indicating the directions of the two families of fibres, with
angle θ. Results are displayed for a range of fibre orientations with θ from ±45◦ to ±90◦

with respect to the (1, 2) coordinate system. B) Computed stress ratio σ33/σ12 versus F12

for the HGO-C model, illustrating significant negative (compressive) stresses in the out-of-
plane direction. C) Computed stress ratio versus F12 for the MA model, illustrating very
small negative (compressive) stresses in the out-of-plane direction (an order of magnitude
lower than for the HGO-C model).

result for the incompressible limit should be recovered, but it is not. Indeed,
if we start with the incompressible model we obtain σ33 = µ0 − p, which is
independent of σ12. However, as (18) represents a kinematically prescribed
isochoric deformation, the volumetric stress in the HGO-C model goes to
zero and does not act as the required Lagrange multiplier.

By contrast, the out-of-plane compressive normal stress component σ33
computed for the MA model is at least an order of magnitude lower than the
in-plane shear stress component σ12 (Figure 2C), and is close to zero for most
fibre orientations. This is consistent with the incompressible case because,
since p is arbitrary it may be chosen to be µ0 so that σ33 = 0. This is what
might be expected physically, given that the fibres and the deformations are
confined to the (1, 2) plane.

Because of the deviatoric component of the stress tensor emerging from
the HGO-C model, the trace of the Cauchy stress is always zero when J = 1
as equations (8) and (9) will confirm. By contrast, the trace of the Cauchy
stress is not zero for the MA model. Hence the in-plane stress components are
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Figure 3: Dimensionless stress components σij/k1 versus F12 for the case of a single family
of fibres orientated at θ = 30◦. A) MA model; B) HGO-C model.

significantly different from those for the HGO-C model, as shown in Figures
3A and 3B, respectively, for the case of a single fibre family with θ = 30◦.

3.2. Plane stress pure shear

The kinematically prescribed isochoric deformation in Section 3.1 is vol-
ume conserving and makes the Ψvol terms equal to zero. We modify the
out-of-plane boundary condition to enforce a plane stress (σ33 = 0) simula-
tion This allows a compressible material to deform of out-of-plane.

A plane stress pure shear deformation is given as

F =


√
F 2
12 + 1 F12 0

F12

√
F 2
12 + 1 0

0 0 F33

 , (19)

where the out of plane stretch component F33 in general is not equal to 1,
so that the deformation is not in general isochoric. If the bulk modulus κ0
is very large compared with the initial shear modulus µ0, then it acts as a
Lagrange multiplier to enforce incompressibility, such that F33 = 1 (at least
approximately). If the magnitude of the bulk modulus is reduced, then the
material becomes slightly compressible and F33 6= 1. Here we investigate the
sensitivity of the stress computed for the HGO-C and MA models to the
magnitude of the bulk modulus κ0.
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Figure 4: Dimensionless plots of the normal and in-plane shear Cauchy stress compo-
nents σij/k1 versus F12 for the case of a single family of fibres orientated at θ = 30◦.
A) Computed stresses for both the HGO-C and MA models with a large bulk modulus
κ0/µ0 = 2 × 106 (equivalent to a Poisson ratio of 0.49999975). B) Computed stresses
for the HGO-C model with κ0/µ0 = 50 (equivalent to a Poisson ratio of 0.490). Note
that the stresses computed for the HGO-C model are an order of magnitude lower in the
slightly compressible small bulk modulus case than in the almost incompressible large bulk
modulus case.

First, we consider the almost incompressible case where the ratio of bulk
to shear modulus is κ0/µ0 = 2×106 for the isotropic neo-Hookean component
of the model, equivalent to a Poisson ratio of ν = 0.49999975. The stress
components are shown in Figure 4A. An important point to note is that
in this case the deformation is effectively isochoric, because we find J =
F33 = 1.00006, and yet the HGO-C model predicts an entirely different stress
state from that for the kinematically constrained isochoric deformation of the
previous section shown in Figure 3B. This is because the volumetric term of
the free energy now contributes to the trace of the stress tensor, and therefore
the high magnitude of bulk modulus effectively acts as a Lagrange multiplier
to enforce incompressibility. Indeed for these conditions the HGO-C and
MA models behave identically to the original HGO model. However, unlike
the HGO-C model, the MA model computes identical stress components for
both the kinematically constrained isochoric deformation (18) and for the
Lagrange multiplier enforced volume preserving deformation (19).

If the incompressibility constraint is slightly relaxed, so that κ0/µ0 = 50
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(ν = 0.490) the HGO-C model computes a very different stress state, as
shown in Figure 4B, with stress components being reduced by an order of
magnitude. Thus the HGO-C model is very sensitive to changes in the bulk
modulus and, consequently, incompressibility must be enforced by choosing a
very large magnitude for the bulk modulus in order to avoid the computation
of erroneous stress states.

By contrast, the MA model computes identical stress states for κ0/µ0 =
2× 106 and κ0/µ0 = 50 (Figure 4A in both cases). This response highlights
the robustness of the MA model, which computes correct results for all levels
of material compressibility (including the incompressible limit).

4. Uniaxial stretch

We now consider a confined uniaxial stretch, as illustrated in Figure 5A,
where a stretch is imposed in the 2-direction (λ2 = λ > 1) and no lateral
deformation is permitted to occur in the 1- and 3-directions (λ1 = λ3 = 1).
Such a simple deformation may have biomechanical relevance as, for example,
in a blood vessel undergoing large circumferential strain, but little or no axial
or radial strain.

We derive analytically the stress components for the HGO-C and MA
models using the formulas of Section 2. We assume there is a single family
of parallel fibres aligned with the reference unit vector a0 in the (1, 2) plane
and with orientation θ relative to the 1-axis ranging from 0◦ to 90◦. We
take µ0 = 0.05 MPa, κ0 = 1 MPa for the slightly compressible neo-Hookean
isotropic matrix, and material constants k1 = 1 MPa and k2 = 100 for the
fibre parameters.

The ratio of the lateral to axial Cauchy stress components, σ11/σ22, is
plotted as a function of applied stretch λ for the HGO-C model (Figure
5B) and the MA model (Figure 5C). Results for the HGO-C model exhibit
negative (compressive) stresses in the lateral direction for certain fibre ori-
entations. This auxetic effect suggests that the material would expand in
the lateral direction in the absence of the lateral constraint and is contrary
to expectations, particularly for fibre orientations closer to the axial direc-
tion. In fact, here the computed lateral compressive force is most pronounced
when the fibre is aligned in the direction of stretch (θ = 90◦), where a trans-
versely isotropic response, with exclusively tensile lateral stresses, should
be expected. For all fibres orientated within about 45◦ of the direction of
stretch, the lateral stress changes from tensile to compressive as the applied
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Figure 5: A) Schematic of confined uniaxial stretch (λ2 = λ > 1, λ1 = λ3 = 1), showing
the fibre family reference directional vector a0 in the (1, 2) plane. The ratio of the Cauchy
stress components σ11/σ22 is computed based on a model with a single fibre family and
plotted as a function of λ. Results are displayed for a range of fibre orientations θ from 0◦

to 90◦. B) Computed results for the HGO-C model, illustrating negative (compressive)
lateral stresses. C) Computed results for the MA model, all lateral stresses being positive
(tensile).

stretch increases. By contrast to the HGO-C model, the MA model yields
exclusively tensile lateral stresses for all fibre orientations (Figure 5C).

5. Finite Element analysis of realistic arterial deformation

Following from the idealized, analytical deformations considered above,
we now highlight the practical significance of the errors computed by using
the HGO-C model for slightly compressible tissue. We consider, in turn, two
Finite Element case studies using Abaqus (2010) to implement the HGO-C
and MA models with user-defined material subroutines (see Appendix A).

5.1. Pressure expansion of an artery

First we simulate the deformation of an artery under a lumen pressure
(LP ). A schematic of a quarter artery is shown in Figure 6A. The vessel
has an internal radius ri of 0.6 mm and an external radius re of 0.9 mm. The
length of the artery in the z-direction is 0.3 mm with both ends constrained
in the z-direction.
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We model the wall as a homogeneous material with two families of fibres
lying locally in the (θ, z) plane, where (r, θ, z) are cylindrical polar coordi-
nates. The fibre families are symmetric with respect to the circumferential
direction and oriented at ±50◦ measured from the circumferential direction.
For the fibres, the material constants are k1 = 1 MPa and k2 = 2, and for
the neo-Hookean matrix, they are µ0 = 0.03 MPa, κ0 = 1 MPa, resulting in a
slightly incompressible material (corresponding to a Poisson ratio of 0.485).
A mesh sensitivity study confirms a converged solution for a model using a
total of 1,044 eight-noded full-integration hexahedral elements.

The (dimensionless) changes in the internal and external radii ∆r/r0 as
functions of increasing dimensionless lumen pressure LP/LPmax are plotted in
Figure 6B. They reveal that the HGO-C model predicts a far more compliant
artery than the MA model.

Notable differences in the arterial wall stress state arise between the HGO-
C and MA models. Figures 6C, D and E present the von Mises stress, pressure
stress and triaxiality, respectively, in the arterial wall. The magnitude and
gradient through the wall thickness of both the von Mises stress and pressure
stress differ significantly between the HGO-C and MA models. This contrast
is further highlighted by the differing distributions of triaxiality for both
models, confirming a fundamental difference in the multi-axial stress state
computed for the two models.

5.2. Stent deployment in an artery

The final case study examines the deployment of a stainless steel stent
in a straight artery. Nowadays most medical device regulatory bodies insist
on computational analysis of stents (FDA , 2010) as part of their approval
process. Here we demonstrate that the correct implementation of the con-
stitutive model for a slightly compressible arterial wall is critical for the
computational assessment of stent performance.

We use a generic closed-cell stent geometry (Conway et al., 2012) with an
undeformed radius of 0.575 mm. It is made of biomedical grade stainless steel
alloy 316L with Young’s modulus of 200 GPa and Poisson’s ratio 0.3 in the
elastic domain. We model plasticity using isotropic hardening J2−plasticity
with a yield stress of 264 MPa and ultimate tensile strength of 584 MPa at
a plastic log strain of 0.274 (McGarry et al., 2007). We mesh the stent
geometry with 22,104 reduced integration hexahedral elements. We model
a balloon using membrane elements, with frictionless contact between the
membrane elements and the internal surface of the stent. Finally, we simulate
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Figure 6: A) Schematic illustrating the geometry, lines of symmetry and boundary con-
ditions for modelling the inflation of an artery under a lumen pressure LP . B) Prediction
of the internal (ri) and external (re) radial strain ∆r/r0 = (r− r0)/r0 in the artery under
a normalized lumen pressure LP/LPmax for the HGO-C and MA models. Panels C), D)
and E) are contour plots illustrating the von Mises (q), pressure (−σhyd) and triaxiality
(σhyd/q) stresses, respectively, in the artery wall for the HGO-C and MA models.

the balloon deployment by imposing radial displacement boundary conditions
on the membrane elements.

For the artery, we take a single layer with two families of fibres symmet-

19



Figure 7: Plot of the dimensionless radial force (F − F0)/F0 required to deploy a stent in
an artery with increasing stent radial expansion. Radial force is normalized by the radial
force at the point immediately before contact with the artery (F0). The radial expansion
is normalized using the initial undeformed internal radius (ri) and the final fully deployed
internal radius (rf). Note that the HGO-C model predicts a more compliant artery than
the MA model.

rically disposed in the (θ, z) plane. The fibres are oriented at ±50◦ to the
circumferential direction and material constants and vessel dimensions are
the same as those used in Section 5.1. Here the FE mesh consists of 78,100
full integration hexahedral elements; a high mesh density is required due to
the complex contact between the stent and the artery during deployment.

“Radial stiffness”, the net radial force required to open a stent, is a com-
monly cited measure of stent performance (FDA , 2010). Figure 7 presents
plots of the predicted net radial force as a function of radial expansion for
the HGO-C and MA models. The predicted radial force required to expand
the stent to the final diameter is significantly lower for the HGO-C model
than for the MA model. This result correlates with the previous finding in
Section 5.1 that the HGO-C model underestimates the arterial compliance,
with significant implications for design and assessment of stents.

Figure 8 illustrates the notable differences that appear in the artery stress
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Figure 8: Contour plots illustrating differences in the stresses computed for the HGO-C
and MA models after stent deployment. A) von Mises stress q, B) pressure stress -σhyd,
C) triaxiality, D) ratio of axial stress to the circumferential stress σzz/σθθ.

state between the HGO-C and MA models. Again, higher values of von Mises
stress (Figure 8A) and pressure stress (Figure 8B) are computed for the MA
model. Both the triaxiality (Figure 8C) and the ratio of axial to circumferen-
tial stress (the stress ratio in the plane of the fibres) (Figure 8D) confirm that
the nature of the computed multi-axial stress state is significantly different
between the MA and HGO-C models.

A detailed examination of the stress state through the thickness (radial
direction) of the artery wall is presented in Figure 9. A comparison between
HGO-C and MA simulations in terms of the ratios of the Cauchy stress com-
ponents emphasizes further the fundamentally different stresses throughout
the entire artery wall thickness. It is not merely that the MA model calcu-
lates a different magnitude of stress, rather the multi-axiality of the stress
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state has been altered.

Figure 9: Stress measures computed through the arterial wall from the internal (ri) to
external radius (re) at full deployment of the stent for the HGO-C and MA models. A)
Triaxiality ratio σhyd/q of the pressure stress to von Mises stress. B) Ratio σzz/σθθ of the
axial to circumferential stress. C) Ratio σrr/σzz of the radial to axial stress. D) Ratio
σrr/σθθ of the radial to circumferential stress.

6. Concluding remarks

The original HGO model (Holzapfel et al. (2000)) is intended for mod-
elling of incompressible anisotropic materials. A compressible form (HGO-C
model) is widely used whereby the anisotropic part of Ψ is expressed in terms
of isochoric invariants. Here we demonstrate that this formulation does not
correctly model compressible anisotropic material behaviour. The anisotropic
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component of the model is insensitive to volumetric deformation due to the
use of isochoric anisotropic invariants. This explains the anomolous finite
element simulations reported in Vergori et al. (2013), whereby a slightly com-
pressible HGO-C sphere was observed to deform into a larger sphere under
tensile hydrostatic loading instead of the ellipsoid which would be expected
for an anisotropic material. In order to achieve correct anisotropic compress-
ible hyperelastic material behaviour we present and implement a modified
(MA) model whereby the anisotropic part of the strain energy density is a
function of the total form of the anisotropic invariants, so that a volumet-
ric anisotropic contribution is represented. This modified model correctly
predicts that a sphere will deform into an ellipsoid under tensile hydrostatic
loading.

In the case of (plane strain) pure shear, a kinematically enforced iso-
choric deformation, we have shown that a correct stress state is computed
for the MA model, whereas the HGO-C model yields incorrect results. Cor-
rect results are obtained for the HGO-C model only when incompressibility
is effectively enforced via the use of a large bulk modulus, which acts as a
Lagrange multiplier in the volumetric contribution to the isotropic terms (in
this case HGO-C model is effectively the same as the original incompressible
HGO model). In the case of a nearly incompressible material (with Poisson’s
ratio = 0.490, for example) we have shown that the in-plane stress compo-
nents computed by the HGO-C model are reduced by an order of magnitude.
Bulk modulus sensitivity has been pointed out for isotropic models by Suh
et al. (2007) and Destrade et al. (2012), and for the HGO-C model by Nı́ An-
naidh et al. (2013b). Here, we have demonstrated that a ratio of bulk to shear
modulus of κ0/µ0 = 2 × 106 (equivalent to a Poisson’s ratio of 0.49999975)
is required to compute correct results for the HGO-C model. By contrast,
the MA model is highly robust with correct results being computed for all
levels of material compressibility during kinematically prescribed isochoric
deformations.

From the view-point of general finite element implementation, red the
requirement of perfect incompressibility (as in the case of a HGO material)
can introduce numerical problems requiring the use of selective reduced inte-
gration and mixed finite elements to avoid mesh locking and hybrid elements
to avoid ill-conditioned stiffness matrices. Furthermore, due to the complex
contact conditions in the simulation of balloon angioplasty (both between the
balloon and the stent, and between the stent and the artery), explicit Finite
Element solution schemes are generally required. However, Abaqus/Explicit
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for example has no mechanism for imposing an incompressibility constraint
and assumes by default that κ0/µ0 = 20 (ν = 0.475). A value of κ0/µ0 > 100
(ν = 0.495) is found to introduce high frequency noise into the explicit so-
lution. We have demonstrated that the HGO-C model should never be used
for compressible or slightly compressible materials. Instead, due to its ro-
bustness, we recommend that the MA model is used in FE implementations
because (i) it accurately models compressible anisotropic materials, and (ii)
if material incompressibility is desired but can only be approximated numeri-
cally (e.g., Abaqus/Explicit) the MA model will still compute a correct stress
state.

A paper by Sansour (2008) outlined the potential problems associated
with splitting the free energy for anisotropic hyperelasticity into volumetric
and isochoric contributions; see also Federico (2010) for a related discussion.
A study of the HGO-C model by Helfenstein et al. (2010) considered the spe-
cific case of uniaxial stress with one family of fibres aligned in the loading, and
suggested that the use of the ‘total’ anisotropic invariant Ii is appropriate.
The current paper demonstrates the importance of a volumetric anisotropic
contribution for compressible materials, highlighting the extensive range of
non-physical behaviour that may emerge in the simulation of nearly incom-
pressible materials if the HGO-C model is used instead of the MA model.
Examples including the Finite Element analysis of artery inflation due to
increasing lumen pressure and stent deployment. Assuming nearly incom-
pressible behaviour (ν = 0.485) the HGO-C model is found to significantly
underpredict artery compliance, with important implications for simulation
and the design of stents (FDA , 2010). We have shown that the multiaxial
stress state in an artery wall is significantly different for the HGO-C and MA
models. Arterial wall stress is thought to play an important role in in-stent
restenosis (neo-intimal hyperplasia) (Thury et al., 2002; Wentzel et al., 2003).
Therefore, a predictive model for the assessment of the restenosis risk of a
stent design must include an appropriate multiaxial implementation of the
artery constitutive law.
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Appendix A. Consistent Tangent Matrix

To write a UMAT, we need provide the Consistent Tangent Matrix (CTM)
of the chosen model. When expressed in terms of Cauchy stress the CTM
given in Abaqus (2010) may be written as

Cijkl = σijδkl +
1

2

(
∂σij
∂Fkα

Flα +
∂σij
∂Flα

Fkα

)
, (A.1)

which has both the i↔ j and k ↔ l minor symmetries.
The CTM may estimated using either numerical techniques or an analyt-

ical solution. Here we first describe a numerical technique for estimation of
the CTM. We then present the analytical solution for the MA and HGO-C
CTM.
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Numerical Approximation of the CTM

The CTM may be approximated numerically (Sun et al. (2008)), and a
short overview is presented here. This numerical approximation is based on
a linearised incremental form of the Jaumann rate of the Kirchhoff stress:

∆τ −∆Wτ − τ∆WT = C : ∆D, (A.2)

where τ is the Kirchhoff stress, ∆τ is the Kirchhoff stress rate, ∆D the rate-
of-deformation tensor and ∆W the spin tensor are the symmetric and anti-
symmetric parts of the spatial velocity gradient ∆L (where ∆L = ∆FF−1),
and C is the CTM.

To obtain an approximation for each of components of the CTM, a small
perturbation is applied to (A.2) through ∆D. This is achieved by perturb-
ing the deformation gradient six times, once for each of the independent
components of ∆D, using

∆F(ij) =
ε

2
(ei ⊗ ejF + ej ⊗ eiF), (A.3)

where ε is a perturbation parameter, ei is the basis vector in the spatial
description, (ij) denotes the independent component being perturbed.

The ‘total’ perturbed deformation gradient is given by F̂
(ij)

= ∆F(ij) +
F. The Kirchhoff stress is then calculated using this perturbed deformation

gradient (τ (F̂
ij

)). The CTM is approximated using

C(ij) ≈ 1

Jε
(τ (F̂

(ij)
)− τ (F)), (A.4)

where J is the determinant of the deformation gradient. Each perturbation
of (A.4) will produce six independent components. This is performed six
times for each independent (ij), giving the required 6× 6 CTM matrix.

Analytical solutions for the MA and HGO-C CTM

Here we present an analytical solution for the CTM for the MA and HGO
models. For convenience we give the volumetric, isotropic and anisotropic
contibutions separately.
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For the MA model the stress is given by equations (8) and (17). We can
calculate Cijkl from

(σvol)ijδkl +
∂(σvol)ij
∂Fkα

Flα = κ0(2J − 1)δijδkl, (A.5)

(σiso)ijδkl +
∂(σiso)ij
∂Fkα

Flα = µ0J
−1 (Bjlδik +Bilδjk − 2

3
Bijδkl − 2

3
Bklδij + 2

9
I1δijδkl

)
,

(A.6)

(σaniso)ijδkl +
∂(σaniso)ij
∂Fkα

Flα = 2k1J
−1
∑
n=4,6

(In − 1) exp[k2(In − 1)2] (anjanlδik + anianlδjk)

+ 4k1J
−1
∑
n=4,6

[2(In − 1)2k2 + 1] exp[k2(In − 1)2]anianjankanl,

(A.7)

where we have used ani, n = 4, 6, i = 1, 2, 3, is the ith component of an =
Fa0n.

For the HGO-C model the stress is given by equations (8) and (9). Once again
the isotropic contributions to Cijkl are given by equations (A.5) and (A.6).
The anisotropic contribution to Cijkl for the HGO-C model is given as:

(σaniso)ijδkl +
∂(σaniso)ij
∂Fkα

Flα = 4k1J
−1
∑
n=4,6

[1 + 2k2
(
In − 1

)2
] exp[k2

(
In − 1

)2
]

×
(
anianj − 1

3
Inδij

) (
ankanl − 1

3
Inδkl

)
+ 2k1J

−1
∑
n=4,6

(In − 1) exp[k2
(
In − 1

)2
] (δikanjanl + δjkanianl

−2
3
δklanianj − 2

3
δijankanl + 2

9
Inδijδkl

)
,

(A.8)

where ani is the ith component of an = Fa0n.
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