Oblique-Wrinkling

Author:
Artur L. Gower

Co-Author:
Prof. Michel Destrade

National University of Ireland Galway
NUI Galway
OÉ Gaillimh

A long long time ago...

Biot in 1963 predicts,

A long long time ago...

Biot in 1963 predicts,

A long long time ago...

Biot in 1963 predicts,

Designing an experiment

Designing an experiment

Designing an experiment

Designing an experiment

Designing an experiment

\longrightarrow Maintains a more homogeneous deformation \longrightarrow

Theoretical Model
Shear-box $x=\chi(X, \theta)$

Theoretical Model

Shear-box $x=\chi(X, \theta)$ plus small $\tilde{x}_{j}=x_{j}+u_{j}$ with

$$
u_{j}(x, y, z)=U_{j}(y) e^{\mathrm{i} k(x \cos \phi+z \sin \phi)} .
$$

Theoretical Model
Shear-box $x=\chi(X, \theta)$ plus small $\tilde{x}_{j}=x_{j}+u_{j}$ with

$$
u_{j}(x, y, z)=U_{j}(y) e^{\mathrm{i} k(x \cos \phi+z \sin \phi)} .
$$

$$
\underbrace{\operatorname{div} \sigma=0 \text { with } \sigma_{i j}=\mathcal{A}_{j i l k} u_{k, l}}_{\text {Incremental Equilibrium Equations }}
$$

Theoretical Model
Shear-box $x=\chi(X, \theta)$ plus small $\tilde{x}_{j}=x_{j}+u_{j}$ with

$$
u_{j}(x, y, z)=U_{j}(y) e^{\mathrm{i} k(x \cos \phi+z \sin \phi)} .
$$

$$
\underbrace{\operatorname{div} \sigma=0 \text { with } \sigma_{i j}=\mathcal{A}_{j i l k} u_{k, l}}_{\text {Incremental Equilibrium Equations }}
$$

$$
\underbrace{\lim _{y \rightarrow \infty} u_{i j} \rightarrow 0}_{\text {Decay Condition }} \quad \underbrace{\sigma_{21}=\sigma_{22}=\sigma_{23}=0}_{\text {Zero Surface traction }}
$$

Theoretical Model

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(I_{2}-3\right)\right]
$$

with

$$
I_{1}=\operatorname{tr} F^{T} F \text { and } I_{2}=\frac{1}{2}\left(\operatorname{tr} F^{T} F\right)^{2}-\frac{1}{2} \operatorname{tr}\left(F^{T} F\right)^{2}
$$

Theoretical Model

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(I_{2}-3\right)\right]
$$

with

$$
I_{1}=\operatorname{tr} F^{\top} F \text { and } I_{2}=\frac{1}{2}\left(\operatorname{tr} F^{\top} F\right)^{2}-\frac{1}{2} \operatorname{tr}\left(F^{\top} F\right)^{2} .
$$

- Destrade et al. (2005) found an explicit bifurcation equation.

Theoretical Model

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(I_{2}-3\right)\right]
$$

with

$$
I_{1}=\operatorname{tr} F^{\top} F \text { and } I_{2}=\frac{1}{2}\left(\operatorname{tr} F^{\top} F\right)^{2}-\frac{1}{2} \operatorname{tr}\left(F^{\top} F\right)^{2} .
$$

- Destrade et al. (2005) found an explicit bifurcation equation.
\square This equation reduces greatly for

Theoretical Model

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(l_{1}-3\right)+(1-f)\left(l_{2}-3\right)\right]
$$

with

$$
I_{1}=\operatorname{tr} F^{\top} F \text { and } I_{2}=\frac{1}{2}\left(\operatorname{tr} F^{\top} F\right)^{2}-\frac{1}{2} \operatorname{tr}\left(F^{\top} F\right)^{2} .
$$

- Destrade et al. (2005) found an explicit bifurcation equation.
- This equation reduces greatly for
- Neo-Hookean $f=1$, [Flavin(1963)] with $\sigma_{0}=0.296$

$$
\lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}^{2} \sin ^{2} \phi+\lambda_{2}^{2} \cos ^{2} \phi\right)=\sigma_{0}^{2}
$$

Theoretical Model

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(I_{2}-3\right)\right]
$$

with

$$
I_{1}=\operatorname{tr} F^{\top} F \text { and } I_{2}=\frac{1}{2}\left(\operatorname{tr} F^{\top} F\right)^{2}-\frac{1}{2} \operatorname{tr}\left(F^{\top} F\right)^{2} .
$$

- Destrade et al. (2005) found an explicit bifurcation equation.
- This equation reduces greatly for
- Neo-Hookean $f=1$, [Flavin(1963)] with $\sigma_{0}=0.296$

$$
\lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}^{2} \sin ^{2} \phi+\lambda_{2}^{2} \cos ^{2} \phi\right)=\sigma_{0}^{2}
$$

- Extreme Mooney-Rivlin $f=-1$ with the above σ_{0}

$$
\sigma_{0}^{4}+\sigma_{0}^{3}+\lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}^{4} \lambda_{2}^{4}-\lambda_{2}^{2}-\lambda_{1}^{2}\right) \sigma_{0}\left(\sigma_{0}+1\right)+4 \lambda_{1}^{6} \lambda_{2}^{6}=0
$$

Predictions

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(I_{2}-3\right)\right]
$$

Predictions

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(l_{2}-3\right)\right]
$$

Predictions

Mooney-Rivlin

$$
W=\frac{\mu}{4}\left[(1+f)\left(I_{1}-3\right)+(1-f)\left(l_{2}-3\right)\right]
$$

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

$$
\min _{u} W(F) \Longrightarrow \operatorname{div} \sigma=0 .
$$

First wrinkles are not oblique when wrinkles are predominantly transverse. For example..

Vague Energy Considerations

Similarily: zero traction \Longrightarrow zero surface energy increment.

Vague Energy Considerations

Similarily: zero traction \Longrightarrow zero surface energy increment.

$$
0=u_{i}^{*} \sigma_{i 2}=\mathcal{A}_{j i l k} u_{i, j}^{*} u_{l, k}=\delta W(\nabla u), \text { on } y=0 .
$$

What next?

\square New theoretical oblique wrinkle

What next?

- New theoretical oblique wrinkle
- Yet not observered

What next?

- New theoretical oblique wrinkle
- Yet not observered

What next?

- New theoretical oblique wrinkle
- Yet not observered

■ Only "highly" nonlinear materials exhibit the phenomena

What next?

- New theoretical oblique wrinkle
- Yet not observered

■ Only "highly" nonlinear materials exhibit the phenomena

■ Energy considerations are always interesting.

What next?

- New theoretical oblique wrinkle
- Yet not observered

■ Only "highly" nonlinear materials exhibit the phenomena
\square Energy considerations are always interesting.
Any questions?
Thanks for listening and hope you enjoyed the talk!

冨 A.M. Biot. Surface instability of rubber in compression. Applied Scientific Research A12 (1963) 168-182. [Note that stricto senso, surface instability can be traced back at least to A.E. Green \& J.E. Adkins, Large Elastic Deformations (Oxford, 1960)]
British Standard BS ISO 8013:2006 Rubber, vulcanized Determination of creep in compression or shear.

- J. Dervaux, M. Ben Amar. Mechanical instabilities of gels, Annu. Rev. Condens. Matter Phys. 3 (2012) 311-32.
(M. Destrade, M.D. Gilchrist, J.G. Murphy. Onset of non-linearity in the elastic bending of blocks, ASME Journal of Applied Mechanics, 77 (2010) 061015.

國 M. Destrade, M.D. Gilchrist, D.A. Prikazchikov, G. Saccomandi. Surface instability of sheared soft tissues, Journal of Biomechanical Engineering, 130 (2008) 061007.

R M．Destrade，M．D．Gilchrist，J．A．Motherway，J．G．Murphy． Bimodular rubber buckles early in bending，Mechanics of Materials， 42 （2010）469－476．

囯 M．Destrade，J．G．Murphy，R．W．Ogden．On deforming a sector of a circular cylindrical tube into an intact tube： Existence，uniqueness，and stability，International Journal of Engineering Science， 48 （2010）1212－1224．

击 M．Destrade，M．Ottenio，A．V．Pichugin，G．A．Rogerson． Non－principal surface waves in deformed incompressible materials，Int．J．Eng．Sci． 42 （2005），1092－1106．

雷 J．N．Flavin．Surface waves in pre－stressed Mooney material，Q． J．Mech．Appl．Math． 16 （1963）441－449．

围 A．N．Gent，I．S．Cho．Surface instabilities in compressed or bent rubber blocks．Rub．Chem．Tech． 72 （1999）253－262．

L．D．Landau，E．M．Lifshitz．Theory of Elasticity，3rd ed． Pergamon，New York（1986）．

目 B．Li，Y．－P．Cao，X．－Q．Feng，H．Gao．Mechanics of morphological instabilities and surface wrinkling in soft materials：A review，Soft Matter 8 （2012） 5728.

圕 S．Mora，M．Abkarian，H．Tabuteau，and Y．Pomeau，Surface instability of soft solids under strain．Soft Matter 7 （2011） 10612－10619．
R．W．Ogden，Nonlinear Elastic Deformations．Dover，New York（1997）．

围 S．Roccabianca，D．Bigoni，M．Gei．Long－wavelength bifurcations and multiple neutral axes in elastic multilayers subject to finite bending．Journal of Mechanics of Materials and Structures， 6 （2011）511－527．
（ C．Stolz．Milieux Continus en Transformations Finies．（2010）， Editions de l＇Ecole Polytechnique．

