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Abstract

Looking at the suggested designs given by Technip, we can see that

there seems to be no limit to the number of positions that the cables

can occupy within the umbilical. Clearly as we can add any number of

fillers of any size, there is not a finite number of cable configurations.

So it is not possible to just check all viable cable configurations one

by one. Instead, we need to allow, mathematically, these cables to be

placed any where as long as they do not overlap or break any other

given restriction. Naturally this leads us to formulate the problem as

an optimisation problem with continuous variables.

Keywords: optimised design, umbilical cables, optimisation.

1 Describing the problem mathematically

Here we translate from English to mathematics the several desirable proper-

ties of an optimised umbilical design.
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We begin by specifying an euclidean (x, y) coordinate system, where (0, 0)

is the centre of the umbilical. We will refer to all the possible conduits, cables

and tubes as just cables. For simplicity, say we want the umbilical to contain

two steel cables and two quad cables with radius RS and RQ, respectively.

We describe the position of the centre of the steel cables by XS
1 = (xS

1 , y
S
1 )

and XS
2 = (xS

2 , y
S
2 ), and the centre of quad cables by XQ

1 = (xQ
1 , y

Q
1 ) and

XQ
2 = (xQ

2 , y
Q
2 ). See Figure 1 for an illustration.
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Figure 1: the position of a cable is described in terms of the vector to its
centre and its radius.

We can now translate the desirable features of an umbilical to simple

mathematical expressions. Figure 2 shows how the different costs described

below influence the optimised design.
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(c) Avoid steel touching

Figure 2: Shows how the results of an optimisation method change when
adding extra cost functions. a) only consider the cost of the area (Carea = 1
and Csteel = Cstiff = 0); b) also includes the cost of balancing the stiffness
(Carea = Cstiff = 1 and Csteel = 0); c) further includes the cost of steel
cables touching (Carea = Cstiff = Csteel = 1). Note that due to their lack of
radial symmetry these results can not be manufactured, something which is
corrected later and the improved results presented in section 3.

1.1 Estimating cost

We begin by assuming the cost of fabrication is proportional to the area of

the umbilical1, so that there is an added cost of

CareaR
2, (1)

1The cost of having a two assembly design is not considered, but could have easily been
included.
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where R is the radius of the umbilical and Carea is the cost per unit area.

In certain situations, it is undesirable for the steel cables to touch. We

can assume that when the steel cables do touch, they wear away more quickly

and this incurs an added long term cost Csteel. A simple, smooth function

that only adds cost when the steel cables touch is

Csteelf
((

2RS
)2 − ‖XS

1 −XS
2 ‖2
)
, (2)

where ‖(x, y)−(w, z)‖ :=
√

(x− w)2 + (y − z)2, f is a sigmoid function such

as f(t) = (1+e−20t), and we used a power of two so that this cost is a smooth

function of its variables (an important feature in gradient based nonlinear

optimisation).

We can also include a design rule of thumb: stiffer cables (i.e. steel cables)

should be well distributed throughout the umbilical. We can again assume

that a long term cost Cstiff is incurred if the stiffer cables are badly dis-

tributed. Say that steel and quad cable have a stiffness of Ssteel and Squad.

We can use principals of physics such as centre of mass or centre of inertia

(when applying torque to the boundary of the umbilical), but with the stiff-

ness’s Ssteel and Squad instead of the masses. The simplest of these is the

centre of stiffness:

Cstiff‖SsteelX
S
1 + SsteelX

S
2 + SquadX

Q
1 + SquadX

Q
2 ‖2. (3)

The above formula gives zero when the centre of stiffness is at the centre of

the umbilical, otherwise a cost is incurred.
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1.2 Constraints

The cables can neither overlap, nor can they be outside the umbilical casing.

For the cables to not overlap translates to

‖XS
1 −XS

2 ‖2 −
(
2RS

)2 ≥ 0, ‖XS
1 −XQ

1 ‖2 −
(
RS + RQ

)2 ≥ 0,

‖XS
1 −XQ

2 ‖2 −
(
RS + RQ

)2 ≥ 0, ‖XS
2 −XQ

1 ‖2 −
(
RS + RQ

)2 ≥ 0,

‖XS
2 −XQ

2 ‖2 −
(
RS + RQ

)2 ≥ 0, ‖XQ
1 −XQ

2 ‖2 −
(
2RQ

)2 ≥ 0. (4)

A trick often used in optimisation is to turn a constraint into a cost penalisa-

tion. For this penalisation to be a smooth function of its variables, we again

used the power of two in the constraint.

Forcing the cables to be within the umbilical casing leads to the constraint

(
R−RS

)2 − ‖XS
1 ‖2 ≥ 0,

(
R−RS

)2 − ‖XS
2 ‖2 ≥ 0,(

R−RQ
)2 − ‖XQ

1 ‖2 ≥ 0,
(
R−RQ

)2 − ‖XQ
2 ‖2 ≥ 0. (5)

for a two assembly design we need to add another constraint for the

components added in the second assembly. Let R0 be the radius of the first

assembly, and assume we want to place both our steel and quad cables in the

second assembly process, then

R−R0 − 2RS ≥ 0, R−R0 − 2RQ ≥ 0, (6)

(R0 + RS)2 − ‖XS
1 ‖2 ≤ 0, (R0 + RQ)2 − ‖XQ

1 ‖2 ≤ 0,

(R0 + RS)2 − ‖XS
2 ‖2 ≤ 0, (R0 + RQ)2 − ‖XQ

2 ‖2 ≤ 0. (7)

The first inequality (6) states that each of the remaining cables fit between

the inner and outer layer. The following inequalities (7) stop any of the
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remaining cables from overlaping with the inner radius.

2 General considerations

There are many optimisation methods, packages and programmes available.

Instead of describing one particular approach, we will outline some general

considerations for all gradient based methods. Later in Section 3 we show

some results.

2.1 Two assembly process and radial symmetry

To actually build any design it needs to poses enough radial symmetry near

the centre, see Figure 2 for examples of designs which can not be built. We

can remedy this by spilting the method into two steps: first choose a small

set of cables (with at least one cable) to go in the centre of the umbilical,

then run the optimisation method just for these cables. For the next step

let R0 be the radius of the smallest circle that contains the cables so far.

With this first set of cables fixed, now run the optimisation algorithm for the

remain cables with the added constraints (6) and (7).

Splitting the method in two steps guarantees radial symmetry in the

centre of the umbilical. If only one cable is placed in the centre then we can

interpret this as a one assembly process, whereas if two or more cables are

placed in the centre then the design is a two assembly process.

2.2 Choosing an initial cable configuration

Putting all the constrains together can leave little room for the cables to

move and rearrange. It easy for an optimisation method to get stuck in one

particular cable configuration (a local minimum). This is why it is important
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to have many different initial values for the method, that should ideally

be well distributed. Then, the method can be run separately for each of

these initial values and compare the results. We achieve this by generating

a large set of random initial cable configurations, and then remove the cable

configuration which are similar.

In the next section we show in more detail how to measure if two cable

configurations are similar, as this technique is also useful when choosing

between optimised designs.

2.3 Measuring similar cable configurations

How do we measure if two cable configurations are alike, in the sense that

they would give umbilicals with the same mechanical properties?

Let all the positions of the centre of the cables be denoted by X1,X2 . . .XN .

Create a matrix M , where Mij = X i ·Xj and (x, y) · (z, w) := xz+yw. This

way a rotation of all the X i’s will not affect M .

Now the order which we list the cables X1,X2, . . . should also not influ-

ence our measure. Note that swapping the order of two cables, for example

swapping X1 with X2, is equivalent to swapping M for PMP where P is a

row-switching matrix with the properties PP = I and detP = −1. One way

to eliminate the influence of the order is to apply sevarel row-switching ma-

trices until (M11,M22, . . . ,MNN), the diagonal of M , is in decreasing order.

Yet another way is to combine the components of M to form quantities that

are invariant to row-switching operations, such as the isotropic invariants

S(M ) =
(
tr(M), tr(M ·M), . . . , tr(MN)

)
. (8)

With the above, the matrices M 1 and M 2 of two cable configurations can
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be compared by computing the difference ‖S(M 1)− S(M 2)‖.

3 Results

Here we present the results of a gradient based method implemented in Math-

ematica 10, which is run with a large set of random initial cable configura-

tions.

To illustrate, we choose the cables

• 5 steel cables with radius RS = 10cm and stiffness Ssteel = 10cm−2

• 2 quad cables with radius RQ = 9cm and stiffness Squad = 2cm−2

• 3 optical cables with radius RO = 5cm and stiffness Soptical = 1cm−2

In section 1.1 we see that we have to choose three cost parameters Carea, Csteel

and Cstiff . We pick two examples

example 1: Carea = 2Cstiff =
1

2
Csteel, (9)

example 2: Carea = Cstiff and Csteel = 0, (10)

where we do not give a value for Carea as only the ratio between the costs

will effect the resulting optimal designs.

Example 1 means that it is more important that steel cables do not touch

and least important is to balance the stiffness, see Figure 3 for the results.

Example 2 gives equal importance to balancing the stiffness and reducing

the area of the umbilical, while not considering if the steel cables touch. See

Figure 4 for the results.

Remember we have not included the cost of having a two assembly process

(two layers), nor do we consider any complications arising from adding fillers.
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The method presented is simply a proof of concept, but could be extended

to include all these considerations that have left out and more.
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(1) One layer and cost: 11.9 C−1
area (2) Two layer and cost: 12.9 C−1

area
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(3) Two layer and cost: 13.1 C−1
area (4) Two layer and cost: 13.1 C−1

area

Figure 3: Shows the optimal designs for the cables specified just above equa-
tion (9), which gives the cost parameters. The large light green circles are
the steel cables, the small purple circles are the optical cables and the mid-
sized jade circles are the quad cables. Note how in general the steel cables
avoid touching and are well distributed in the umbilical (due to the balance
of stiffness).

4 Conclusion

To summarise, this report showed how to translate several features of an

optimised umbilcal into mathematics. We also proposed that we can calculate
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(1) Two layer and cost: 13.3 C−1
area (2) One layer and cost: 13.5 C−1

area

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(3) One layer and cost: 13.9 C−1
area (4) Two layer and cost: 13.9 C−1

area

Figure 4: Shows the optimal designs for the cables specified just above equa-
tion (10), which gives the cost parameters. The large light green circles
are the steel cables, the small purple circles are the optical cables and the
mid-sized jade circles are the quad cables. Note how in general these umbil-
icals are more compact than those given in Figure 3 because steel cables are
allowed to touch.

the optimised designs by using nonlinear optimisation methods. As a proof

of concept, we used Mathmatica’s optimisation tools to generate the optimal

designs shown in Figures 3 and 3.

Both the cost and stiffness parameters used in the method were not

known, such as CArea and Ssteel. To improve the method, these parame-

ters can be roughly estimated and then the method can search within these

estimates to produce optimised designs.
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The results shown here were achieved in only a few days of work, so we

believe that we have clearly shown that it is possible to automatically pro-

duce optimal umbilical designs. Possible next steps to take this idea forward

would be to hire the sevices of a mathematical consultancy, or enter a part-

nership with a academics from a computer science or applied mathematics

departement. With a university, there is the option of funding a PhD student

or post doctural researcher to work in collaboration with Technip.
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