Characterizing Fibre Reinforced Elastic Solids through the formation of Surface Wrinkles.

A.L. Gower (arturgower@gmail.com)
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway,
University Road, Galway, Ireland

Abstract.
There is a need for more complete models of fibre reinforced solids that use both anisotropic invariants. However, these models offer major challenges. Two of these challenges are how to combine these anisotropic invariants, and how to reliably determine the models parameters from experiments. We present an intuitive way to account for both anisotropic invariants through a measure of the fibres extension and a measure of the fibres compression. We suggest that a possible remedy to help characterize the material is to use surface-wrinkling experiments.

A soft solid, when compressed, will often develop wrinkles within its elastic regime. Much like when we pinch our skin. Here we use the theory of elasticity to effectively model these large deformations and predict the formation of small superimposed wrinkles. Hence we work through the conditions for small surface-wrinkles to appear, and apply these conditions to a simple model that uses both the measures of fibre extension and compression. It turns out that the angle between the fibres and the surface wrinkles orientation can be used to distinguish whether the fibres resist only extension, compression, or a mixture of both.

We also uncover a striking tendency of this angle between the fibres and the wrinkle orientation to alternate between only three or four fixed quanta. This trend increases as the fibres strength is increased.

Keywords: fibre-reinforced, nonlinear elasticity, wrinkles, soft matter.

1. Introduction

Many biological tissues are composed of a soft matrix reinforced by stiffer fibres approximately aligned in one direction at any given point. A most prevalent example is fibres made of collagen embedded in a soft matrix of elastin, see Criscione et al.(1999) and Donzelli et al.(1999). If we wish to explore phenomena on a larger scale than the distance between the fibres, then the investigation can be simplified by assuming that the material is homogeneous yet anisotropic with a preferred direction (Spencer, 1984).

Much work has been done along this line, with models motivated by specific applications (Holzapfel and Ogden, 2010), easy to fit to measurements (Lu and Zhang, 2005), conserving strong-ellipticity (Ciarletta et al., 2011), and many more. In this work we introduce two anisotropic invariants related to the compression and extension of the fibres, and justify how a simple model based on these invariants addresses a few issues raised in the literature.

The majority of models for the sake of simplicity use only the anisotropic invariant $I_4 = M^T C M$, and leave out the second anisotropic invariant $I_5 = M^T C^2 M$, where $C = F F^T$, $F$ is the deformation gradient and $M$ is a unit vector aligned with the fibres. It turns out that for these models two of the three shearing modes are identical and infinitesimal shear moduli are all identical, which is not supported by experiments (Murphy, 2013). They are also unlikely to reproduce a certain range of tensile experiments (Destrade et al., 2013), and not allowing an independent contribution from both $I_4$ and $I_5$ creates
new unrealistic universal relations (Pucci and Saccomandi, 2014). We therefore advocate using both anisotropic invariants.

Most models have focused on how the fibres resist extension. However, Ciarletta et al.(2011) notes that there is evidence that the presence of fibers alters the mechanical response when under compression, both at the macroscopic (Van Loocke et al., 2006) and the microscopic levels (Brangwynne et al., 2006). To systematically incorporate the fibers resistance to compression Ciarletta et al.(2011) introduced the structural invariant $M^T(C + C^{-1})M$. However, this structural invariant does not separate the contributions from both anisotropic invariants. One advantage is that building a strain-energy density from $M^T(C + C^{-1})M$ guarantees the condition of strong-ellipticity in planar deformations. However, a loss of SE can signal the occurrence of several physical phenomena (Merodio and Ogden, 2003).

To avoid the above limitations, we propose that both anisotropic invariants be included through an invariant that measures the fibres extension $I_{4S} = I_4 = M^T CM$ and another that measures the fibres compression $I_{4C} = M^T C^{-1} M$. A simple model with these measures has the following anisotropic strain-energy density part

$$W_A = \frac{A_S}{4}(I_{4S} - 1)^2 + \frac{A_C}{4}(I_{4C} - 1)^2,$$

where $A_S > 0$ and $A_C > 0$ are constants. This way both invariants $I_4$ and $I_5$ are included independently, which is demonstrated in Section 2.1. The larger the value of $A_S$ and $A_C$, the greater the fibres will resist being stretched and compressed, respectively. This model is a simple prototype, but given the need, more complex models can be developed, such as ones that include the strong stiffening effect observed in collagen (Holzapfel et al., 2000).

One major challenge for anisotropic models is to be able to reliably determine the models parameters from experiments. Even the protocol for simple tensile testing has not been completely established, as these tests induce shear forces and bending moments (Destrade et al., 2013). Having both anisotropic invariants further complicates matters, for example it is not possible to fully characterize such a material even with a full range of planar biaxial tests (Holzapfel and Ogden, 2009).

A possible remedy is to use surface-wrinkling experiments to help characterize the material. We have noticed that varying the fibres resistance to being stretched and compressed creates very distinct wrinkling patterns (Section 3). In essence, wrinkles appear to minimize the strain-energy. When the fibres are stiffer than the surrounding soft matrix, the wrinkles dominantly act to lengthen the fibres, if they resist compression, or shorten the fibres, if they resist extension. This is essentially why varying the contribution from $I_{4C}$ and $I_{4S}$ to $W_A$ distinctly alters the wrinkling pattern. For a pictorial view of a surface-wrinkle see Figure 2 and (Mora et al., 2011).

Although the theory behind calculating surface wrinkles is now well established, there is still a scarcity of work investigating this wrinkling of soft anisotropic solids. One notable work (Destrade et al., 2008) investigates the wrinkling of the classic reinforcement model $A_C = 0$ for simple shear. One major difficulty encountered in that search is how to avoid numerical instabilities. Following along the line of Destrade et al.(2008) we use a method based on the surface impedance matrix (Fu and Mielke, 2002; Fu, 2005). In Section 3.2 we present this robust numerical method and demonstrate how it can be reliably used for any choice of anisotropy with one family of fibres. With this method in hand we uncover
a striking tendency: the angle between the fibres and the wrinkle orientation alternates between three or four quanta, shown in Figure 6.

Other than determining material parameters, understanding the formation of wrinkling has many technologically applications. For instance, wrinkles are induced to develop functional coatings, such as diffractors or substrates for cellular growth (Li et al., 2012). On the other hand, when a material wrinkles it may have reached the limit of its performance (Genzer and Groenewold, 2006). Most applications make use of predictions from linear elasticity, but in the presence of large strain or stress, the nonlinear theory may lead to significantly different outcomes (Gower et al., 2013). In this context, the process of wrinkling has contributed to understanding the morphogenesis and the origin of shapes in biological tissues, see (Amar and Goriely, 2005) and (Balbi and Ciarletta, 2013).

Wrinkling as a measurement tool has been successfully developed by researchers at the US National Institute of Standards and Technology (Stafford et al., 2004). This new experimental technique measures the strain needed for thin films to wrinkle, and with this measure determines their elastic modulus. Given the right theoretical and numerical tools, the wrinkling of soft solids can also be used to assist characterize the fibre reinforcement, their orientation and the underlying isotropic matrix. For instance, there is a great interest for such a method to determine the fibres orientation in human skin (Ciarletta et al., 2013).

The outline is as follows. We explain our choice of fibre reinforcement in Section 2.1, and then develop the relevant incremental equations and the basis for using the Riccati equation to calculate surface-wrinkles in Section 2.2. To exemplify the numerical method, and as a case study, we present the shear-box deformation in Section 3.1. Using the shear-box as an illustration, the Riccati method for calculating surface-wrinkles is given in Section 3.2. With this method we predict the formation of wrinkles for the shear-box and investigate the results in Section 3.3. Based on the results we suggest asymptotic methods in Section 3.4. We summarize the important features of this paper in Section 4, and give a recap of the phenomena uncovered in the wrinkling pattern, together with directions for possible future work.

2. The Model

2.1. Theoretical Setup

Here we look at the material’s response to a large deformation and justify our model of an inclusion of single-family of fibres in a soft matrix. This model is essentially a transverse anisotropic medium. In Section 2.2 we move onto the formation of wrinkles. For more background on the subject of anisotropic nonlinear elasticity see (Spencer, 1984).

The behaviour of the material will be determined by our choice of the strain-energy density \( W \). We assume that \( W = W_I + W_A \), that is, the sum of an isotropic part and an anisotropic part. For \( W_I \) we use a compressible Mooney-Rivlin material,

\[
W_I = C_1(I_3^{-1/3}I_1 - 3) + C_2(I_3^{2/3}I_2 - 3) + \frac{\kappa}{2}(I_3 - 1)^2, \tag{2}
\]

where \( C_1 > 0, C_2 > 0, \kappa > 0 \) are constants,

\[
I_1 = \text{tr} \, C, \quad I_2 = \frac{1}{2} \left[ (\text{tr} \, C)^2 - (C^2) \right], \quad I_3 = \det C, \tag{3}
\]
and \( C = \mathbf{F}^T \mathbf{F} \) is the right Cauchy-Green strain tensor. For the anisotropic contribution we consider a single family of fibres with their orientation in the reference configuration along the unit vector \( \mathbf{M} \), which may vary within the material. We want a simple way to incorporate the fibres resistance to both compression and extension, and we choose,

\[
W_A = \frac{A_S}{4} (I_4^S - 1)^2 + \frac{A_C}{4} (I_4^C - 1)^2, \tag{4}
\]

where

\[
I_4^S = \mathbf{M}^T \mathbf{C} \mathbf{M}, \quad I_4^C = \mathbf{M}^T \mathbf{C}^{-1} \mathbf{M}, \tag{5}
\]

and \( A_S > 0 \) and \( A_C > 0 \) are constants. The square in both the terms of \( W_A \) guarantees that \( W_A \) is positive, and that the material is stress-free when undeformed, i.e. when \( \mathbf{C} = \mathbf{I} \), the Cauchy stress is zero. The invariant \( I_4^S \) measures how stretched the fibres are, while \( I_4^C \) measures their compression. To justify this statement we decompose \( \mathbf{F} \) along the principal directions to obtain

\[
\mathbf{F} = \lambda_i \mathbf{v}^i \otimes \mathbf{V}^i, \tag{6}
\]

where \( \mathbf{v}^i \) and \( \mathbf{V}^i \) are unit vectors. When deformed, the fibres orientation and stretch are given by \( \mathbf{m}^S = \mathbf{F} \mathbf{M} \) and \( \| \mathbf{m}^S \| \) respectively. This can be written as \( \mathbf{m}^S = \lambda_i (\mathbf{V}^i \cdot \mathbf{M}) \mathbf{v}^i \) and \( \| \mathbf{m}^S \|^2 = \lambda_i^2 (\mathbf{V}^i \cdot \mathbf{M})^2 = \mathbf{M}^T \mathbf{C} \mathbf{M} \). Here the stretch ratio of the fibre is accounted for by the principal stretches \( \lambda_i \)'s. So a term such as \( \lambda_i^{-2} (\mathbf{V}^i \cdot \mathbf{M})^2 = \mathbf{M}^T \mathbf{C}^{-1} \mathbf{M} \) would be appropriate to measure the compression ratio of the fibres. This measure is related to the vector \( \mathbf{m}^C = \mathbf{F}^{-T} \mathbf{M} = \lambda_i^{-1} (\mathbf{V}^i \cdot \mathbf{M}) \mathbf{v}^i \) because \( \| \mathbf{m}^C \|^2 = \mathbf{M}^T \mathbf{C}^{-1} \mathbf{M} \). Note that using \( \mathbf{M}^T \mathbf{C}^{-1} \mathbf{M} \) rather than \( 1/(\mathbf{M}^T \mathbf{C} \mathbf{M}) \) leads to simpler algebraic expressions.

For any model of anisotropy to reproduce a range of experiments, both the classical invariants, commonly name \( I_4 = I_4^S \) and \( I_5 = \mathbf{M}^T \mathbf{C}^2 \mathbf{M} \), must have an independent contribution to the strain-energy density \( W \). This condition is respected for any strain energy that has an independent contribution from \( I_4^S \) and \( I_5^S \), such as \( W_A \). We show this statement by applying the Cayley-Hamilton theorem to \( \mathbf{C} \) to get

\[
C^3 - C^2 I_1 + CI_2 - I_3 = 0 \implies C^2 - CI_1 + I_2 - C^{-1} I_3 = 0, \tag{7}
\]

multiplying by \( \mathbf{M}^T \) on the left side and \( \mathbf{M} \) on the right side, and then rearranging, we reach

\[
I_5 = I_5^S I_3 + I_5^S I_1 - I_2. \tag{8}
\]

As \( I_3 \neq 0 \), both \( I_5 \) and \( I_4 \) are independent accounted for in \( W_A \). Ciarletta et al.(2011, 2013) use the structural invariant \( I_\alpha = I_4^S + I_4^C - I \). Finally, fixing \( A_C = 0 \) is known as the standard fibre reinforcement model (Destrade et al., 2013).

Now consider that the material is deformed by taking a material point initially at \( \mathbf{X} \) in the reference configuration to position \( \mathbf{x} = \mathbf{x}(\mathbf{X}) \) in the current configuration. Let \( (X_1, X_2, X_3) \) and \( (x_1, x_2, x_3) \) be fixed rectangular Cartesian coordinates of \( \mathbf{X} \) and \( \mathbf{x} \), respectively. The Cauchy stress tensor \( \sigma \) is then given by the connection (Ogden, 1997; Marsden and Hughes, 1994)

\[
\sigma_{ij} = (\det F)^{-1} \frac{\partial W}{\partial F_{ia}} F_{ja}, \tag{9}
\]
where $F_{ij} = \partial x_i / \partial X_j$. Through our choice $W = W_I + W_A$ we can separate the stress into

$$\sigma_{ij} = \sigma_{ij}^I + \sigma_{ij}^A,$$

where

$$\sigma_{ij}^I = (\det F)^{-1} \frac{\partial W_I}{\partial F_{ia}} F_{ja} \quad \text{and} \quad \sigma_{ij}^A = (\det F)^{-1} \frac{\partial W_A}{\partial F_{ia}} F_{ja}. \quad (11)$$

Introducing $m^C = FM$ and $m^S = F^{-1}M$ we find that

$$\sigma_{ij}^A = (\det F)^{-1} \left( A_S(I^S - 1)m^S_i m^S_j - A_C(I^C - 1)m^C_i m^C_j \right), \quad (12)$$

and

$$\sigma_{ij}^I = -p\delta_{ij} + 2 (C^A_{ij} - \frac{2}{3} C^A_{i} - \frac{1}{3} C^A_{j}) B_{ij} - 2 C^A_{i} B_{i\beta} B_{j\beta}, \quad (13)$$

for an incompressible solid, where $p$ is a Lagrange multiplier due to the constraint $\det F = 1$ at all times. For a compressible solid we find

$$\sigma_{ij}^I = \left( \frac{2}{3} C^A_{ij} - \frac{2}{3} C^A_{i} - \frac{1}{3} C^A_{j} \right) \delta_{ij} + 2 \left( C^A_{ij} - \frac{2}{3} C^A_{i} - \frac{1}{3} C^A_{j} \right) B_{ij} - 2 C^A_{i} B_{i\beta} B_{j\beta}. \quad (14)$$

The compressible version of $\sigma^I$ is more involved but also more general. The method we present in Section 2.2 is for compressible solids, though because we focus on almost incompressible solids, the simpler incompressible equations can be useful.

To see how this model of anisotropy influences the stress response, we take a uniaxial isochoric deformation parallel to the fibers $F_{ij} = \lambda M_i M_j + \lambda^{-1} M_i^\perp M_j^\perp$, with the unit vector $M^\perp$ perpendicular to $M$, leading to

$$\sigma_{ij}^A = \left[ \lambda^2 A_S(\lambda^2 - 1) - \lambda^{-2} A_C(\lambda^{-2} - 1) \right] M_i M_j. \quad (15)$$

To illustrate we plot several curves of $\sigma_m = \sigma_{ij}^A M_i M_j$ against $\lambda$, see Figure 1.

### 2.2. Incremental Equations

To reach the conditions for small amplitude surface-wrinkles to appear on top of a large elastic deformation, we need to first work through the incremental equations of stress and equilibrium. Then we must apply these equations to a surface-wrinkle. We do this in a simple setting where the material occupies the half-space $x_2 \geq 0$, and we take the boundary $x_2 = 0$ to be free of traction. A small-amplitude wrinkle in this material is described by the displacement field $u = u(x)$, satisfying in the cartesian coordinate system $(x_1, x_2, x_3)$ the incremental equations of equilibrium (Ogden, 1997),

$$s_{pq} = A_{pq\ell} u_{\ell, pq} = 0 \quad \text{with} \quad A_{pq\ell} = \frac{1}{J F_{pa} F_{pb} \frac{\partial^2 W}{\partial F_{pa} \partial F_{tb}}} = A^I_{pq\ell} + A^A_{pq\ell}, \quad (14)$$

where $s_{pq} = A_{pq\ell} u_{\ell, pq}$ are the components of the incremental nominal stress tensor, $A^I_{pq\ell}$ and $A^A_{pq\ell}$ are respectively the contribution to $A_{pq\ell}$ from $W_A$ and $W_I$. We assume that in
the region of dead-load stability, for example see (Ogden, 1997), $\mathcal{A}$ satisfies the strong-convexity condition (S-C)

$$\mathcal{A}_{ijkl}\xi_{ij}\xi_{kl} > 0 \quad \text{for all non-zero matrices } \xi.$$  

The strong-ellipticity condition reads

$$\mathcal{A}_{pqab}v_p v_q w_a w_b > 0 \quad \text{for all non-zero vectors } v \text{ and } w,$$

and is implied by strong-convexity. See Walton and Wilber(2003) and Merodio and Ogden(2003) for an interpretation of strong-ellipticity. Using $W_A$ from equation (4) and (14) we find that

$$\mathcal{A}_{ijkl}^A = A_C \left[ (I^C_4 - 1) \left( \delta_{jk} m_i^C m_k^C + \delta_{ik} m_j^C m_k^C + \delta_{il} m_j^C m_k^C \right) + 2m_i^C m_j^C m_k^C m_l^C \right] + A_S \left[ (I^S_4 - 1) \delta_{jk} m_i^S m_k^S + 2m_i^S m_j^S m_k^S m_l^S \right].$$

A wrinkle along the surface $x_2 = 0$ with wrinkle-front normal to $n$ direction is of the form

$$u(x_1, x_2, x_3) = U(x_2)e^{ikx \cdot n},$$

where the amplitude $U$ is a vector function of $x_2$ alone, $k$ is the wavenumber and $n = (\cos \theta, 0, \sin \theta)$. We can think of $U$ as the result of a Fourier transform in $x_1$ and $x_3$, implying that solving $U$ for every $\theta$ will form a complete basis for first-order bifurcation. For $u$ to satisfy the equations of motion (14) for every $x_1$ and $x_3$ we must have

$$TU''(x_2) + ik(R + RT)U'(x_2) - k^2QU(x_2) = 0,$$

where the matrices $R, Q, T$ are given by

$$T = Q^{(2)}, \quad R = R^{(3)} \cos \theta + R^{(1)} \sin \theta,$$

$$Q = Q^{(1)} \cos^2 \theta + Q^{(3)} \sin^2 \theta + (R^{(2)} + R^{(2)^T}) \cos \theta \sin \theta.$$
which in turn are defined in terms of their components by

\[
Q^{(1)}_{j\ell} = A_{1j\ell}, \quad Q^{(2)}_{j\ell} = A_{2j\ell}, \quad Q^{(3)}_{j\ell} = A_{3j\ell},
\]

\[
R^{(1)}_{j\ell} = A_{2j3\ell}, \quad R^{(2)}_{j\ell} = A_{3j1\ell}, \quad R^{(3)}_{j\ell} = A_{2j1\ell},
\]

\[
Q_{j\ell} = A_{pijq\ell}n_p n_q, \quad R_{j\ell} = A_{2j1\ell},
\]

(22)

where \(Q_{ij}^{(n)} = Q_{ji}^{(n)}\) for \(n = 1, 2, 3\). The matrices \(Q^{(1)}, Q^{(2)}, Q^{(3)}\) and \(Q\) are positive definite due to strong-ellipticity (16).

A surface-wrinkle is simply a wrinkle that decays as \(x_2\) increases, that is

\[
\lim_{x_2 \to \infty} U(x_2) = 0.
\]

(23)

To satisfy this condition it is well established (Ting, 1996) that the general solution to the ODE (19) is of the form

\[
U(x_2) = e^{i k E x_2} U_0
\]

(24)

where \(U_0\) is a constant vector and \(E\) is a constant 3 x 3 matrix (not to be confused with the Green strain) whose eigenvalues have a positive imaginary part, i.e. \(\text{Im \ Spec } E > 0\). Such an \(E\) always exists if strong-ellipticity holds.

Figure 2. An illustration of a surface-wrinkle on a fibre reinforced material, with \(n\) being normal to the wrinkle-front. The curvy black lines indicate the fibre angle. Note that the surface-wrinkle’s amplitude decays as \(x_2\) increases.

Figure 2 illustrates a surface wrinkle and how its amplitude decays when moving away from the surface (as \(x_2\) increases).

The resulting incremental traction \(s_{pi} = A_{pij} u_{j,q}\) due to the wrinkle \(u\) is

\[
s_{2i} = i k (R_{ij} + T_{ia} E_{aj}) u_j.
\]

(25)

For the surface \(x_2 = 0\) to have zero traction, then \(s_{2i} = 0\) for \(i = 1, 2, 3\), which in turn implies that \(\det(\mathbf{R} + T \mathbf{E}) = 0\). Now rather than solving for \(E\) with \(\text{Im \ Spec } E > 0\), and that satisfies the above condition, a successful method is to solve directly for the impedance matrix

\[
\mathbf{Z} = -i(\mathbf{R} + T \mathbf{E}), \quad \text{where} \quad s_{2i} = -k Z_{ij} u_j.
\]

(26)
The impedance matrix relates the incremental displacement to the incremental normal traction, as shown above, which leads to many useful properties (Fu and Mielke, 2002; Gower et al., 2013; Norris and Shuvalov, 2010). The decay condition $\text{Im } \text{Spec } E > 0$ is equivalent to $Z = Z^\dagger$ together with $Z > 0$, where the superscript $\dagger$ denotes the Hermitian, both these properties can be shown through balance of virtual momentum (Gower et al., 2013). A traction free surface is guaranteed if $\det Z = 0$. To solve for $Z$ we substitute $E = iT^{-1}(Z + iR)$ and the form (24) into the ode (19), to reach the algebraic Riccati equation

$$(R^T + iZ)T^{-1}(R - iZ) - Q = 0,$$

which has a unique solution for a positive definite $Z$ (i.e. $Z > 0$). Because $Z$ is hermitian we can rewrite the Riccati equation (27) as

$$(R^T + iZ)T^{-1/2}[(R^T + iZ)T^{-1/2}]^\dagger = Q,$$

There are efficient numerical methods to solve the Riccati equation based on Schur decomposition (Laub, 1979), Newton method (Benner and Byers, 1998) and more recently the matrix sign function (Norris et al., 2013).

In conclusion, a surface-wrinkle with zero surface traction corresponds to

$$Z \geq 0 \text{ (positive semi-definite), } Z = Z^\dagger \text{ and } \det Z = 0. \quad (29)$$

A similar use of the Riccati equation to find a zero-traction solution was originally developed for surface-waves (Mielke and Fu, 2003). In Section 3.2 we describe how best to use the Riccati equation to locate a traction free surface-wrinkle.

3. Shear-Box Wrinkling

3.1. The Shear-box

To obtain a large homogeneous static deformation, we use the *shear-box deformation* (Stolz, 2010), see Figure 3. It brings a point with material coordinates $(X_1, X_2, X_3)$ to the spatial position with coordinates $(x_1, x_2, x_3)$ given by

$$x_1 = X_1 + X_3 \sin \varphi, \quad x_2 = \lambda_2 X_2, \quad x_3 = X_3 \cos \varphi,$$

where $\varphi$ is the *tilting angle*: at $\varphi = 0$, the box is rectangular; at $\varphi = 90^\circ$, it is flattened. Commonly in biological tissues the fibres are parallel to the free-surface $x_2 = 0$, so we may write $M = (\cos A, 0, \sin A)$, this in turn leads to the stress on the surface $x_2 = 0$, $\sigma_{22}$, being zero all except the normal component $\sigma_{22}$. So we determine the principal stretch $\lambda_2$ by solving $\sigma_{22} = 0$ in terms of $\varphi$, which leads to

$$C_1 (1 - \lambda_2^2) + C_2 (\lambda_2 \cos \varphi)^{-2/3} (\cos^2 \varphi - \lambda_2^2) + \frac{3}{2} \kappa (\lambda_2 \cos \varphi)^{8/3} (1 - \lambda_2^2 \cos^2 \varphi) = 0, \quad (31)$$

which must be solved numerically. For an incompressible material $\lambda_2 = (\cos \varphi)^{-1}$, and for $\kappa$ a hundred times larger than $C_1 + C_2$ for a compressible material, we find that $\lambda_2 \approx (\cos \varphi)^{-1}$ with a maximum error of 1% for $\varphi < 60^\circ$, which is within the range of our numerical experiments.
The shear-box is a simple example for it needs only the tilting angle $\varphi$ to control the deformation, and it is viable to execute experimentally. In contrast, a biaxial test has many parameters and can be difficult to achieve in-plane for fibre reinforced solids (Holzapfel and Ogden, 2009). With the shear-box deformation we will illustrate our method for calculating surface wrinkles and our asymptotic results.

### 3.2. The Riccati Method

The essence of the method is to deform the material step-by-step and check, at each step, whether the material can now sustain a surface-wrinkle. To describe a surface-wrinkles we use the incremental framework developed in Section 2.2, and let the magnitude of the finite deformation be parametrized by $\varphi$, with $\varphi = 0$ corresponding to no deformation (such as the tilt angle $\varphi$ for the shear-box deformation).

To run the numerical method, the material constants $C_1$, $C_2$, $\kappa$, $A_S$ and $A_C$ in equations (2) and (4) must first be fixed. At this point the incremental moduli $\mathcal{A}_{ijkl}$, given in equations (14)2, are a function of the magnitude of the deformation $\varphi$, the angle of the wrinkle-front $\theta$, used in equation (18), and the angle of the fibres $A$. Note that $M = (\cos A, 0, \sin A)$. So the matrices $T = T(\varphi, \theta, A)$, $R = R(\varphi, \theta, A)$ and $Q = Q(\varphi, \theta, A)$ made up from the components of $\mathcal{A}_{ijkl}$ are also functions of $\varphi$, $\theta$ and $A$. These matrices determine a unique positive definite $Z$ through the Riccati equation (27), so that $Z$ is also a function of $\varphi$, $\theta$, and $A$. For there to exist an initial positive definite $Z$ for $\varphi = 0$, the strong-convexity condition (15) must hold.

Below we calculate the first surface-wrinkle to appear. To do so, for each fibre angle $A$, we increase the deformation until we reach a critical amount $\varphi = \varphi^*(A)$, at which point $\det Z = 0$, meaning that there exists a zero traction surface-wrinkle with $\theta = \theta^*(A)$. The method is detailed below.
The Riccati method

For each fibre orientation $A \in [0, \pi]$, set $\varphi = 0$ then

1. Calculate for every $\theta \in [0, \pi]$ the positive semi-definite Hermitian $Z$.

2. If $\det Z > \text{tol}$ for every $\theta \in [0, \pi]$, then increment $\varphi$ and go back to 1.

3. Find $\theta$ such that $\det Z$ is a minimum, and set $\theta^*(A) = \theta$ and $\varphi^*(A) = \varphi$.

At the end of the process we have a curve $(\varphi^*(A), \theta^*(A))$ giving the deformation magnitude and angle of the wrinkle-front as a function of the fibre angle $A$.

Methods based on looking for positive semi-definite solutions for $Z$ can be difficult to use. This is mainly due to the $\det Z$ being very sensitive to small variations in $\varphi$, $\theta$ and $A$. So, at Step 2, the error tolerance $\text{tol}$ would have to be much larger than the mesh size of $\varphi$ and $\theta$. Otherwise, at Step 1, after an increment in $\varphi$, we may step past the zero-traction solution and simply find no positive semi-definite solution for some $\theta$. It is also possible not to find a positive semi-definite $Z$ because there is no surface wrinkle for $A$. To distinguish between the two cases, it would be necessary to decrease $\varphi$ very thinly to investigate which situation occurred.

This problem can be circumvented by using a method based on implicitly solving for $Z$, without taking into consideration $Z$ being positive semi-definite. These implicit solutions should begin at the positive definite $Z$ for $\varphi = 0$, but then as $\varphi$ is increased one should seek solutions to $Z$ implicitly by using the Riccati equation (27), without explicitly looking for positive definiteness. The uniqueness of a positive semi-definite $Z$ means that the implicit solutions will be well defined, and that when $\det Z < 0$, with Hermitian $Z$, we are sure that a zero-traction surface wrinkle exists, and is close by.

We note, however, that numerically for the model in question, a surface wrinkle exists for every fiber orientation, within the parameters we explored. To verify the correctness of the algorithm, we also reproduced the results found by Ciarletta et al.(2013) and Destrade et al.(2008).

3.3. Predictions

For our simulations, we will set the material parameters in (2) to be $C_1 = 1$, $\kappa = 200$ (to make the material virtually incompressible), and will study the effect of varying $C_2$ and varying the fibres resistance to stretch $A_S$ and to compression $A_C$ in (4). To control the fibre strength and resistance to stretch/compression separately we set $(A_S, A_C) = (S \cos \tau, S \sin \tau)$, where $S$ is a constant.

For the standard fibre reinforcement model, $A_C = 0$ and $C_2 = 0$, the ratio of the fibre strength has been estimated to be $S/C_1 = 20, 40, 80$ for several biological tissues (Destrade et al., 2008). So we will investigate the stability of fibre strength around the same order and take the values $S = 16, 32, $ and $64$. For simplicity we begin by setting $C_2 = 0$, $C_1 = 1$. The wrinkling patterns for $S = 16$ are shown in Figure 4, with $\tau = 0^\circ$ (only resist extension), $\tau = 45^\circ$ (resist extension and compression equally) and $\tau = 90^\circ$ (only resist compression).

In Figure 5 we see how the stiffer the fibres (the larger $S$), the earlier the onset of surface-wrinkles. This same effect was noticed for simple shear (Destrade et al., 2008;
Figure 4. The graphs show the critical deformation $\phi^*$ and wrinkle-front angle $\theta^*$ for a surface-wrinkle to appear with fibre angle $A$ degrees from the $X_1$ axes. The material parameters used were $S = 16$, $C_1 = 1$, $C_2 = 0$, $C_3 = 200$ and $\tau = 0^\circ$, $45^\circ$ and $90^\circ$ correspond to the red, purple and blue curves, respectively.

Ciarletta et al., 2013). The dashed lines show when the fibres are along the direction of greatest stretch $A = 45^\circ$ and greatest compression $A = 90^\circ + 45^\circ$. We see that the most distinctive difference is that fibres that only resist extension wrinkle earlier when $A = 45^\circ$, while in comparison the fibres that only resist compression wrinkle earlier when $A = 90^\circ + 45^\circ$.

Figure 4b, showing $A$ against $\theta^*$, is harder to interpret. What relationship could one expect between the angle of the fibres before deformation $A$ and the angle of the wrinkle-front $\theta^*$ after deformation? We can make better sense of these results by using the current angle of the fibres $\alpha_S$, and the compression counterpart $\alpha_C$. To find these angles we need $F_{ij} = \partial x_i / \partial X_j$, with $x_i$’s for the shear-box given by Equations (30). Then $\alpha_S$ and $\alpha_C$ are respectively the angles that $\mathbf{m}^S = \mathbf{F}\mathbf{M}$ and $\mathbf{m}^C = \mathbf{F}^{-T}\mathbf{M}$ make with $x_1$ axes,

$$
\alpha_S = \tan^{-1} \left( \frac{\tan A \cos \phi}{\tan A \sin \phi + 1} \right) \quad \text{and} \quad \alpha_C = \tan^{-1} \left( \frac{\tan A - \sin \phi}{\cos \phi} \right) .
$$

(32)
Looking at $A^4_{ijkl}$ in equation (17) we can clearly see the importance of $m^S$ and $m^C$. Their angles can be understood qualitatively through the maps $A \rightarrow \alpha_S(A, \phi)$ and $A \rightarrow \alpha_C(A, \phi)$, where we can imagine that $\phi$ is fixed. When the fibres are along the direction of greatest stretch in the reference, $A = 45^\circ$, both these maps bring $45^\circ$ to the angle of greatest stretch in the current configuration. The same applies to the direction of greatest compression, that is both $\alpha_S$ and $\alpha_C$ map $45^\circ + 90^\circ$ to the angle of least stretch in the current configuration. In general $A \rightarrow \alpha_S(A, \phi)$ takes points close to $A = 45^\circ$ and brings them even closer to $\alpha_S(45^\circ, \phi)$, while it takes points close to $A = 45^\circ + 90^\circ$ and repels them from $\alpha_S(45^\circ, \phi)$. The map $A \rightarrow \alpha_C(A, \phi)$ has the opposite effect.

Using these maps and the same parameter range in Figure 5 we produce two new plots: Figure 6a shows $\alpha_S$ against $\theta^*$ for fibres that resist extension and Figure 6b shows $\alpha_C$ against $\theta^*$ for fibres that resist compression. These graphs have multiple discontinuities and are even at times multivalued. From the theory there is no guarantee of a unique wrinkle-front angle $\theta^*$ and seemingly the stiffer the fibres, the more competing minima for $\theta^*$ appear. Figure 6 shows how the wrinkle-front angle $\theta^*$ changes as the fibres become stiffer ($S$ increases). These graphs show a clear trend. In Figure 6a the angle between $\alpha_S$ and $\theta^*$ alternates between being close to the three quanta $\theta^* - \alpha_S = 90^\circ, 33.3^\circ$ and $-33.3^\circ$. Similarly, in Figure 6b the angle between $\alpha_C$ and $\theta^*$ alternates between the three quanta $\theta^* - \alpha_S = 0^\circ, 55^\circ$ and $-55^\circ$. In both cases the stiffer the fibres, the more closely $\theta^* - \alpha_S$ and $\theta^* - \alpha_C$ stay on their respective quanta. These same quanta, for both cases, seem not to change as $C_2/C_1$ is increased from 0% to 100%.

The question that remains is how fibres with both $A_S \neq 0$ and $A_C \neq 0$ will behave. Figure 7 answers that question, where $A_S = A_C = 64 \cos 45^\circ$ and we have varied the value of $C_2$ so as to illustrate that $C_2$ hardly affects the quanta. This time both the graphs $(\alpha_S, \theta^*)$ and $(\alpha_C, \theta^*)$ are similar, and both gravitate around the quanta $\theta^* - \alpha_S = 0^\circ, 55^\circ/2 + 33.3^\circ/2, 90^\circ$ and $-55^\circ/2 - 33.3^\circ/2$. For this reason Figure 7 only shows $(\alpha_C, \theta^*)$. Note that as $C_2$ decreases the fibres get comparatively stiffer than the isotropic matrix and again the curves get closer to the dashed lines. The values $55^\circ/2 + 33.3^\circ/2$ and $-55^\circ/2 - 33.3^\circ/2$ are half way between two of the quanta for $A_S = 0$ and two of the quanta for $A_C = 0$, which indicates that a simple rule relating $A_S$ and $A_C$ to the resulting quanta probably exists.

3.4. ASYMPTOTICS

We have found that varying the fibres’ resistance to compression and extension greatly changes the surface wrinkle-front angle. So it is possible to characterize the fibres through the surface wrinkles, but the calculations to do so are quite demanding. If approximations could be developed to extract the key features in the wrinkling pattern, it might be enough to characterize the fibres without computing the complete wrinkling graphs.

Based on the numerical experiments of Section 3.3, an attractive choice is to approximate $\alpha_S - \theta^*$, or $\alpha_C - \theta^*$, defined by Equations (32), as being constant. A further simplification is to only investigate fibres that are approximately along the most and least stretched directions. For it is in these directions that a change in $A_S$ and $A_C$ most affects the critical deformation $\phi^*$. Another reason to make this simplification is that for simple shear, $\alpha_S$ becomes asymptotic to the direction of greatest stretch (Ciarletta et al., 2013) when $\alpha_S - \theta \approx 90^\circ$.

Here we will only indicate how to formulate these approximations for a general homogeneous deformation. To simplify the calculations, we choose a coordinate system such
that the deformation gradient $\mathbf{F}$ is diagonalized, with $F_{ii} = \lambda_i$ for $i = 1, 2, 3$ and the $\lambda_i$’s are the principal stretches. Let $\lambda_3 > \lambda_1$ and let $\lambda_2$ correspond to a stretch which is orthogonal to the plane of the fibres, so that $\mathbf{M} = (\cos A, 0, \sin A)$. This way the current fibre angles $\alpha_S$ and $\alpha_C$, measured from the $x_1$ axis, are

$$\alpha_S = \arctan \left( \frac{\lambda_3 \sin A}{\lambda_1 \cos A} \right) \quad \text{and} \quad \alpha_C = \arctan \left( \frac{\lambda_1 \sin A}{\lambda_3 \cos A} \right).$$

(33)

As an example, we will approximate $\alpha_C$ as being the angle of the direction of greatest stretch and approximate $\theta - \alpha_C = 0$, this would respectively translate to

$$\alpha_C = \pi/2 + \delta \alpha \pi \quad \text{and} \quad \alpha_C = \theta + \epsilon \pi,$$

(34)
for $\delta \alpha$ and $\epsilon_2$ small. Both these approximations hold true for a portion of every numerical experiment discussed in Section 3.3. From the first of these approximations we deduce that,

$$\cos A = \pm \delta \alpha \pi \frac{\lambda_1}{\lambda_3} + \mathcal{O}(\delta \alpha^3) \quad \text{and} \quad \sin A = 1 - \frac{\pi^2 \delta \alpha^2 \lambda_1^2}{2 \lambda_3^2} + \mathcal{O}(\delta \alpha^3). \quad (35)$$

From both approximations (34) we deduce that $\theta = \pi/2 + (\delta \alpha - \epsilon)\pi$, where we rename $\delta \alpha - \epsilon = \delta \theta$, resulting in

$$\cos \theta = -\delta \theta \pi + \mathcal{O}(\delta \theta^3) \quad \text{and} \quad \sin \theta = 1 - \frac{\delta \theta^2 \pi^2}{2} + \mathcal{O}(\delta \theta^3). \quad (36)$$

Suppose that $\lambda_1$, $\lambda_2$ and $\lambda_3$ are parametrized by some magnitude of deformation $\varphi$. These approximations can then be used in the incremental moduli $A_{ijkl}$, from which we obtain the matrices $T = T(\delta \alpha, \delta \theta, \varphi)$, $R = R(\delta \alpha, \delta \theta, \varphi)$ and $Q = Q(\delta \alpha, \delta \theta, \varphi)$ for the Riccati equation (27). Truncating the resulting Riccati equation for some order in $\delta \alpha$ and $\delta \theta$ may lead to analytic results, or at least greatly simplify the application of the Riccati method 3.2, as both $\delta \alpha$ and $\delta \theta$ need only have a small range.

4. Conclusion

There is a clear need for more complete models of fibre reinforced materials. Here we have pointed a way to include both anisotropic invariants in a simple physical way: through one invariant that measures fibre stretch $I^S_1$ and another that measures fibre compression $I^C_2$. Giving a clear meaning to the anisotropic invariants makes it is easier to design specific models, and perhaps to fit parameters from experiments, as varying $A_S$ and $A_C$ dramatically changes the material’s response. We also explained a method for using the Riccati equation to calculate surface-wrinkles.
A striking phenomena was revealed when studying the onset of surface-wrinkles: the difference between the current fibre orientation and the wrinkle orientation $\alpha_S - \theta^*$, and $\alpha_C - \theta^*$, tends to only occupy 3 or 4 possible discrete values, see Figure 7. This simple behaviour must have a simple underlying explanation. One possible avenue would be to develop asymptotic solutions, as suggested in Section 3.4. Explaining this quanta phenomena could lead to a simple method for approximately calculating surface wrinkles for anisotropic materials, and therefore lead to an efficient way to characterize fibre reinforced soft solids by how they form surface-wrinkles.

Acknowledgements

The support of the Hardiman Foundation (NUI Galway) and of the Irish Research Council is gratefully acknowledged. I thank Konstantine Soldatos and Raymond Ogden for their support, and for organizing Euromech Colloquium 551: “Fibre-reinforced Materials: Theory and Applications”. I thank Michel Destrade for insightful discussions and support.

References

Destrade, M., B. M. Donald, J. G. Murphy, and G. Saccomandi: 2013, ‘At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials’. Computational Mechanics 52(4), 959–969.


