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Abstract.
There is a need for more complete models of fibre reinforced solids that use both anisotropic in-

variants. However, these models offer major challenges. Two of these challenges are how to combine
these anisotropic invariants, and how to reliably determine the models parameters from experiments.
We present an intuitive way to account for both anisotropic invariants through a measure of the fibres
extension and a measure of the fibres compression. We suggest that a possible remedy to help characterize
the material is to use surface-wrinkling experiments.

A soft solid, when compressed, will often develop wrinkles within its elastic regime. Much like when
we pinch our skin. Here we use the theory of elasticity to effectively model these large deformations and
predict the formation of small superimposed wrinkles. Hence we work through the conditions for small
surface-wrinkles to appear, and apply these conditions to a simple model that uses both the measures of
fibre extension and compression. It turns out that the angle between the fibres and the surface wrinkles
orientation can be used to distinguish whether the fibres resist only extension, compression, or a mixture
of both.

We also uncover a striking tendency of this angle between the fibres and the wrinkle orientation to
alternate between only three or four fixed quanta. This trend increases as the fibres strength is increased.

Keywords: fibre-reinforced, nonlinear elasticity, wrinkles, soft matter.

1. Introduction

Many biological tissues are composed of a soft matrix reinforced by stiffer fibres ap-
proximately aligned in one direction at any given point. A most prevalent example is
fibres made of collagen embedded in a soft matrix of elastin, see Criscione et al.(1999)
and Donzelli et al.(1999). If we wish to explore phenomena on a larger scale than the
distance between the fibres, then the investigation can be simplified by assuming that
the material is homogeneous yet anisotropic with a preferred direction (Spencer, 1984).

Much work has been done along this line, with models motivated by specific applica-
tions (Holzapfel and Ogden, 2010), easy to fit to measurements (Lu and Zhang, 2005),
conserving strong-ellipticity (Ciarletta et al., 2011), and many more. In this work we
introduce two anisotropic invariants related to the compression and extension of the
fibres, and justify how a simple model based on these invariants addresses a few issues
raised in the literature.

The majority of models for the sake of simplicity use only the anisotropic invariant
I4 = MTCM, and leave out the second anisotropic invariant I5 = MTC2M, where C =
FFT , F is the deformation gradient and M is a unit vector aligned with the fibres. It turns
out that for these models two of the three shearing modes are identical and infinitesimal
shear moduli are all identical, which is not supported by experiments (Murphy, 2013).
They are also unlikely to reproduce a certain range of tensile experiments (Destrade
et al., 2013), and not allowing an independent contribution from both I4 and I5 creates
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new unrealistic universal relations (Pucci and Saccomandi, 2014). We therefore advocate
using both anisotropic invariants.

Most models have focused on how the fibres resist extension. However, Ciarletta
et al.(2011) notes that there is evidence that the presence of fibers alters the mechanical
response when under compression, both at the macroscopic (Van Loocke et al., 2006)
and the microscopic levels (Brangwynne et al., 2006). To systematically incorporate the
fibers resistance to compression Ciarletta et al.(2011) introduced the structural invariant
MT (C + C−1)M. However, this structural invariant does not seperate the contributions
from both anisotropic invariants. One advantage is that building a strain-energy density
from MT (C+C−1)M guarantees the condition of strong-ellipticity in planar deformations.
However, a loss of SE can signal the occurance of several physical phenomenas (Merodio
and Ogden, 2003).

To avoid the above limitations, we propose that both anisotropic invariants be in-
cluded through an invariant that measures the fibres extension IS4 = I4 = MTCM and
another that measures the fibres compression IC4 = MTC−1M. A simple model with these
measures has the following anisotropic strain-energy density part

WA =
AS
4

(IS4 − 1)2 +
AC
4

(IC4 − 1)2, (1)

where AS > 0 and AC > 0 are constants. This way both invariants I4 and I5 are included
independently, which is demonstrated in Section 2.1. The larger the value of AS and AC ,
the greater the fibres will resist being stretched and compressed, respectively. This model
is a simple prototype, but given the need, more complex models can be developed, such
as ones that include the strong stiffening effect observed in collagen (Holzapfel et al.,
2000).

One major challenge for anisotropic models is to be able to reliably determine the
models parameters from experiments. Even the protocol for simple tensile testing has not
been completely established, as these tests induce shear forces and bending moments (De-
strade et al., 2013). Having both anisotropic invariants further complicates matters, for
example it is not possible to fully characterize such a material even with a full range of
planar biaxial tests (Holzapfel and Ogden, 2009).

A possible remedy is to use surface-wrinkling experiments to help characterize the
material. We have noticed that varying the fibres resistance to being stretched and com-
pressed creates very distinct wrinkling patterns (Section 3). In essence, wrinkles appear to
minimize the strain-energy. When the fibres are stiffer than the surrounding soft matrix,
the wrinkles predominantly act to lengthen the fibres, if they resist compression, or
shorten the fibres, if they resist extension. This is essentially why varying the contribution
from IC4 and IS4 to WA distinctly alters the wrinkling pattern. For a pictorial view of a
surface-wrinkle see Figure 2 and (Mora et al., 2011).

Although the theory behind calculating surface wrinkles is now well established, there
is still a scarcity of work investigating this wrinkling of soft anisotropic solids. One notable
work (Destrade et al., 2008) investigates the wrinkling of the classic reinforcement model
AC = 0 for simple shear. One major difficulty encountered in that search is how to avoid
numerical instabilities. Following along the line of Destrade et al.(2008) we use a method
based on the surface impedance matrix (Fu and Mielke, 2002; Fu, 2005). In Section 3.2
we present this robust numerical method and demonstrate how it can be reliably used for
any choice of anisotropy with one family of fibres. With this method in hand we uncover
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a striking tendency: the angle between the fibres and the wrinkle orientation alternates
between three or four quanta, shown in Figure 6.

Other than determining material parameters, understanding the formation of wrinkling
has many technologically applications. For instance, wrinkles are induced to develop
functional coatings, such as diffractors or substrates for celular growth (Li et al., 2012).
On the other hand, when a material wrinkles it may have reached the limit of its perfor-
mance (Genzer and Groenewold, 2006). Most applications make use of predictions from
linear elasticity, but in the presence of large strain or stress, the nonlinear theory may
lead to significantly different outcomes (Gower et al., 2013). In this context, the process
of wrinkling has contributed to understanding the morphogenesis and the origin of shapes
in biological tissues, see (Amar and Goriely, 2005) and (Balbi and Ciarletta, 2013).

Wrinkling as a measurement tool has been successfully developed by researchers at
the US National Institute of Standards and Technology (Stafford et al., 2004). This new
experimental technique measures the strain needed for thin films to wrinkle, and with this
measure determines their elastic modulus. Given the right theoretical and numerical tools,
the wrinkling of soft solids can also be used to assist characterize the fibre reinforcement,
their orientation and the underlying isotropic matrix. For instance, there is a great interest
for such a method to determine the fibres orientation in human skin (Ciarletta et al.,
2013).

The outline is as follows. We explain our choice of fibre reinforcement in Section 2.1,
and then develop the relevant incremental equations and the basis for using the Riccati
equation to calculate surface-wrinkles in Section 2.2. To exemplify the numerical method,
and as a case study, we present the shear-box deformation in Section 3.1. Using the
shear-box as an illustration, the Riccati method for calculating surface-wrinkles is given
in Section 3.2. With this method we predict the formation of wrinkles for the shear-box
and investigate the results in Section 3.3. Based on the results we suggest asymptotic
methods in Section 3.4. We summarize the important features of this paper in Section 4,
and give a recap of the phenomena uncovered in the wrinkling pattern, together with
directions for possible future work.

2. The Model

2.1. Theoretical Setup

Here we look at the material’s response to a large deformation and justify our model of an
inclusion of single-family of fibres in a soft matrix. This model is essentially a transverse
anisotropic medium. In Section 2.2 we move onto the formation of wrinkles. For more
background on the subject of anisotropic nonlinear elasticity see (Spencer, 1984).

The behaviour of the material will be determined by our choice of the strain-energy
density W . We assume that W = WI +WA, that is, the sum of an isotropic part and an
anisotropic part. For WI we use a compressible Mooney-Rivlin material,

WI = C1(I
−1/3
3 I1 − 3) + C2(I

−2/3
3 I2 − 3) +

κ

2
(I3 − 1)2, (2)

where C1 > 0, C2 > 0, κ > 0 are constants,

I1 = tr C, I2 =
1

2

[
(tr C)2 − tr (C2)

]
, I3 = detC, (3)
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and C = FTF is the right Cauchy-Green strain tensor. For the anisotropic contribution
we consider a single family of fibres with their orientation in the reference configuration
along the unit vector M, which may vary within the material. We want a simple way to
incorporate the fibres resistance to both compression and extension, and we choose,

WA =
AS
4

(IS4 − 1)2 +
AC
4

(IC4 − 1)2, (4)

where

IS4 = MTCM, IC4 = MTC−1M, (5)

and AS > 0 and AC > 0 are constants. The square in both the terms of WA guarantees
that WA is positive, and that the material is stress-free when undeformed, i.e. when
C = I, the Cauchy stress is zero. The invariant IS4 measures how stretched the fibres are,
while IC4 measures their compression. To justify this statement we decompose F along
the principal directions to obtain

F = λiv
i ⊗Vi, (6)

where vi and Vi are unit vectors. When deformed, the fibres orientation and stretch are
given by mS = FM and ‖mS‖ respectively. This can be written as mS = λi(V

i ·M)vi

and ‖mS‖2 = λ2i (V
i ·M)2 = MTCM. Here the stretch ratio of the fibre is accounted

for by the principal stretches λi’s. So a term such as λ−2i (Vi ·M)2 = MTC−1M would
be appropriate to measure the compression ratio of the fibres. This measure is related to
the vector mC = F−TM = λ−1i (Vi ·M)vi because ‖mC‖2 = MTC−1M. Note that using
MTC−1M rather than 1/(MTCM) leads to simpler algebraic expressions.

For any model of anisotropy to reproduce a range of experiments, both the classical
invariants, commonly name I4 = IS4 and I5 = MTC2M, must have an independent
contribution to the strain-energy density W . This condition is respected for any strain
energy that has an independent contribution from IS4 and IS5 , such as WA. We show this
statement by applying the CayleyHamilton theorem to C to get

C3 −C2I1 + CI2 − I3 = 0 =⇒ C2 −CI1 + I2 −C−1I3 = 0, (7)

multiplying by MT on the left side and M on the right side, and then rearranging, we
reach

I5 = IS5 I3 + IS4 I1 − I2. (8)

As I3 6= 0, both I5 and I4 are independently accounted for in WA. Ciarletta et al.(2011,
2013) use the structural invariant Iα = IS4 + IC4 − I. Finally, fixing AC = 0 is known as
the standard fibre reinforcement model (Destrade et al., 2013).

Now consider that the material is deformed by taking a material point initially at
X in the reference configuration to position x = x(X) in the current configuration.
Let (X1, X2, X3) and (x1, x2, x3) be fixed rectangular Cartesian coordinates of X and
x, respectively. The Cauchy stress tensor σ is then given by the connection (Ogden,
1997; Marsden and Hughes, 1994)

σij = (detF )−1
∂W

∂Fia
Fja, (9)
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where Fij = ∂xi/∂Xj. Through our choice W = WI +WA we can separate the stress into

σij = σIij + σAij, (10)

where

σIij = (detF )−1
∂WI

∂Fia
Fja and σAij = (detF )−1

∂WA

∂Fia
Fja. (11)

Introducing mC = FM and mS = F−1M we find that

σAij = (detF)−1
(
AS(IS4 − 1)mS

i m
S
j − AC(IC4 − 1)mC

i m
C
j

)
, (12)

and

σIij =− pδij + 2 (C2I1 + C1)Bij − 2C2Biβ1Bjβ1 , (13)

for an incompressible solid, where p is a Lagrange multiplier due to the constraint detF =
1 at all times. For a compressible solid we find

σIij = −
(

2

3
C1I1I

−1/3
3 +

4

3
C2I2I

−2/3
3 − 2κ(I3 − 1)I3

)
δij

+ 2
(
C2I1I

−2/3
3 + C1I

−1/3
3

)
Bij − 2C2I

−2/3
3 Biβ1Bjβ1 .

The compressible version of σI is more involved but also more general. The method
we present in Section 2.2 is for compressible solids, though because we focus on almost
incompressible solids, the simpler incompressible equations can be useful.

To see how this model of anisotropy influences the stress response, we take a uniaxial
isochoric deformation parallel to the fibers Fij = λMiMj + λ−1M⊥

i M
⊥
j , with the unit

vector M⊥ perpendicular to M, leading to

σAij =
[
λ2AS(λ2 − 1)− λ−2AC(λ−2 − 1)

]
MiMj.

To illustrate we plot several curves of σm = σAijMjMi against λ, see Figure 1.

2.2. Incremental Equations

To reach the conditions for small amplitude surface-wrinkles to appear on top of a large
elastic deformation, we need to first work through the incremental equations of stress
and equilibrium. Then we must apply these equations to a surface-wrinkle. We do this
in a simple setting where the material occupies the half-space x2 ≥ 0, and we take the
boundary x2 = 0 to be free of traction. A small-amplitude wrinkle in this material is
described by the displacement field u = u(x), satisfying in the cartesian coordinate
system (x1, x2, x3) the incremental equations of equilibrium (Ogden, 1997),

spj,p = Apjq`u`,pq = 0 with Apjq` =
1

J
FpaFqb

∂2W

∂Fja∂F`b
= AIpjq` +AApjq`, (14)

where spi = Apiqjuj,q are the components of the incremental nominal stress tensor, AIpjq`
and AApjq` are respectively the contribution to Apjq` from WA and WI . We assume that in
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Figure 1. The ratio of uniaxial deformation λ against the stress σm, both taken along the fibre orientation
M. Each curve corresponds to a different value for τ where AS = cos τ and AC = sin τ . As the curves
shade from red to blue (indicated by the arrows), τ increase from 0 to π/2 by increments of π/12, and
the material offers less resistence to extension and more resistence to compression.

the region of dead-load stability, for example see (Ogden, 1997), A satisfies the strong-
convexity condition (S-C)

Aijk`ξijξk` > 0 for all non-zero matrices ξ. (15)

The strong-ellipticity condition reads

Apaqbvpvqwawb > 0 for all non-zero vectors v and w, (16)

and is implied by strong-convexity. See Walton and Wilber(2003) and Merodio and Og-
den(2003) for an interpretation of strong-ellipticity. Using WA from equation (4) and (14)2
we find that

AAijk` = AC
[
(IC4 − 1)

(
δjkm

C
i m

C
` + δikm

C
j m

C
` + δi`m

C
j m

C
k

)
+ 2mC

i m
C
j m

C
km

C
`

]
+ AS

[
(IS4 − 1)δj`m

S
i m

S
k + 2mS

i m
S
jm

S
km

S
`

]
. (17)

A wrinkle along the surface x2 = 0 with wrinkle-front normal to n direction is of the
form

u(x1, x2, x3) = U(x2)e
ikx·n, (18)

where the amplitude U is a vector function of x2 alone, k is the wavenumber and n =
(cos θ, 0, sin θ). We can think of U as the result of a Fourier transform in x1 and x3,
implying that solving U for every θ will form a complete basis for first-order bifurcation.
For u to satisfy the equations of motion (14)1 for every x1 and x3 we must have

TU′′(x2) + ik(R + RT)U′(x2)− k2QU(x2) = 0, (19)

where the matrices R, Q,T are given by

T = Q{2}, R = R{3} cos θ + R{1} sin θ, (20)

Q = Q{1} cos2 θ + Q{3} sin2 θ + (R{2} + R{2}T) cos θ sin θ, (21)
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which in turn are defined in terms of their components by

Q
{1}
j` = A1j1`, Q

{2}
j` = A2j2`, Q

{3}
j` = A3j3`,

R
{1}
j` = A2j3`, R

{2}
j` = A3j1`, R

{3}
j` = A2j1`,

Qj` = Apjq`npnq, Rj` = A2jq`nq, (22)

where Q
{n}
ij = Q

{n}
ji for n = 1, 2 and 3. The matrices Q{1}, Q{2}, Q{3} and Q are positive

definite due to strong-ellipticity (16).
A surface-wrinkle is simply a wrinkle that decays as x2 increases, that is

lim
x2→∞

U(x2) = 0. (23)

To satisfy this condition it is well established (Ting, 1996) that the general solution to
the ODE (19) is of the form

U(x2) = eikEx2U0 (24)

where U0 is a constant vector and E is a constant 3 x 3 matrix (not to be confused with
the Green strain) whose eigenvalues have a positive imaginary part, i.e. Im Spec E > 0.
Such an E always exists if strong-ellipticity holds.

n

x2

Figure 2. An illustration of a surface-wrinkle on a fibre reinforced material, with n being normal to the
wrinkle-front. The curvy black lines indicate the fibre angle. Note that the surface-wrinkle’s amplitude
decays as x2 increases.

Figure 2 illustrates a surface wrinkle and how its amplitude decays when moving away
from the surface (as x2 increases).

The resulting incremental traction spi = Apiqjuj,q due to the wrinkle u is

s2i = ik(Rij + TiaEaj)uj. (25)

For the surface x2 = 0 to have zero traction, then s2i = 0 for i = 1, 2 and 3, which in
turn implies that det(R + TE) = 0. Now rather than solving for E with Im Spec E > 0,
and that satisfies the above condition, a successful method is to solve directly for the
impedance matrix

Z = −i(R + TE), where s2i = −kZijuj. (26)
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The impedance matrix relates the incremental displacement to the incremental normal
traction, as shown above, which leads to many useful properties (Fu and Mielke, 2002;
Gower et al., 2013; Norris and Shuvalov, 2010). The decay condition Im Spec E > 0 is
equivalent to Z = Z† together with Z > 0, where the superscript † denotes the Hermitian,
both these properties can be shown through balance of virtual momentum (Gower et al.,
2013). A traction free surface is guaranteed if detZ = 0. To solve for Z we substitute
E = iT−1(Z + iR) and the form (24) into the ode (19), to reach the algebraic Riccati
equation

(RT + iZ)T−1(R− iZ)−Q = 0, (27)

which has a unique solution for a positive definite Z (i.e. Z > 0). Because Z is hermitian
we can rewrite the Riccati equation (27) as

(RT + iZ)T−1/2
[
(RT + iZ)T−1/2

]†
= Q, (28)

There are efficient numerical methods to solve the Riccati equation based on Schur de-
composition (Laub, 1979), Newton method (Benner and Byers, 1998) and more recently
the matrix sign function (Norris et al., 2013).

In conclusion, a surface-wrinkle with zero surface traction corresponds to

Z ≥ 0 (positive semi-definite), Z = Z† and detZ = 0. (29)

A similar use of the Riccati equation to find a zero-traction solution was originally
developed for surface-waves (Mielke and Fu, 2003). In Section 3.2 we describe how best
to use the Riccati equation to locate a traction free surface-wrinkle.

3. Shear-Box Wrinkling

3.1. The Shear-box

To obtain a large homogeneous static deformation, we use the shear-box deformation (Stolz,
2010), see Figure 3. It brings a point with material coordinates (X1, X2, X3) to the spatial
position with coordinates (x1, x2, x3) given by

x1 = X1 +X3 sinϕ, x2 = λ2X2, x3 = X3 cosϕ, (30)

where ϕ is the tilting angle: at ϕ = 0, the box is rectangular; at ϕ = 90◦, it is flattened.
Commonly in biological tissues the fibres are parallel to the free-surface x2 = 0, so we
may write M = (cosA, 0, sinA), this in turn leads to the stress on the surface x2 = 0, σi2,
being zero all except the normal component σ22. So we determine the principal stretch
λ2 by solving σ22 = 0 in terms of ϕ, which leads to

C1

(
1− λ22

)
+ C2 (λ2 cosϕ)−2/3

(
cos2 ϕ− λ22

)
+

3

2
κ(λ2 cosϕ)8/3

(
1− λ22 cos2 ϕ

)
= 0, (31)

which must be solved numerically. For an incompressible material λ2 = (cosϕ)−1, and
for κ a hundred times larger than C1 + C2 for a compressible material, we find that
λ2 ≈ (cosϕ)−1 with a maximum error of 1% for φ < 60◦, which is within the range of our
numerical experiments.
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Figure 3. A skematic of the shear-box deformation.

The shear-box is a simple example for it needs only the tilting angle ϕ to control the
deformation, and it is viable to execute experimentally. In contrast, a biaxial test has many
parameters and can be difficult to achieve in-plane for fibre reinforced solids (Holzapfel
and Ogden, 2009). With the shear-box deformation we will illustrate our method for
calculating surface wrinkles and our asymptotic results.

3.2. The Riccati Method

The essence of the method is to deform the material step-by-step and check, at each step,
whether the material can now sustain a surface-wrinkle. To describe a surface-wrinkles
we use the incremental framework developed in Section 2.2, and let the magnitude of the
finite deformation be parametrized by ϕ, with ϕ = 0 corresponding to no deformation
(such as the tilt angle ϕ for the shear-box deformation).

To run the numerical method, the material constants C1, C2, κ, AS and AC in equa-
tions (2) and (4) must first be fixed. At this point the incremental moduli Aijkl, given
in equations (14)2, are a function of the magnitude of the deformation ϕ, the angle
of the wrinkle-front θ, used in equation (18), and the angle of the fibres A. Note that
M = (cosA, 0, sinA). So the matrices T = T(ϕ, θ, A), R = R(ϕ, θ, A) and Q = Q(ϕ, θ, A)
made up from the components of Aijkl are also functions of ϕ, θ and A. These matrices
determine a unique positive definite Z through the Riccati equation (27), so that Z is
also a function of ϕ, θ, and A. For there to exist an initial positive definite Z for ϕ = 0,
the strong-convexity condition (15) must hold.

Below we calculate the first surface-wrinkle to appear. To do so, for each fibre angle A,
we increase the deformation until we reach a critical amount ϕ = ϕ∗(A), at which point
detZ = 0, meaning that there exists a zero traction surface-wrinkle with θ = θ∗(A). The
method is detailed below.
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The Riccati method

For each fibre orientation A ∈ [0, π], set ϕ = 0 then

1. Calculate for every θ ∈ [0, π] the positive semi-definite
Hermitian Z.

2. If detZ > tol for every θ ∈ [0, π], then increment ϕ and
go back to 1.

3. Find θ such that detZ is a minimum, and set θ∗(A) = θ
and ϕ∗(A) = ϕ.

At the end of the process we have a curve (ϕ∗(A), θ∗(A)) giving the deformation magni-
tude and angle of the wrinkle-front as a function of the fibre angle A.

Methods based on looking for positive semi-definite solutions for Z can be difficult to
use. This is mainly due to the detZ being very sensitive to small variations in ϕ, θ and
A. So, at Step 2. the error tolerance tol would have to be much larger than the mesh
size of ϕ and θ. Otherwise, at Step 1., after an increment in ϕ, we may step past the
zero-traction solution and simply find no positive semi-definite solution for some θ. It is
also possible not to find a positive semi-definite Z because there is no surface wrinkle for
A. To distinguish between the two cases, it would be necessary to decrease ϕ very thinly
to investigate which situation occured.

This problem can be circumvented by using a method based on implicitly solving
for Z, without taking into consideration Z being positive semi-definite. These implicit
solutions should begin at the positive definite Z for ϕ = 0, but then as ϕ is increased one
should seek solutions to Z implicitly by using the Riccati equation (27), without explicitly
looking for positive definiteness. The uniqueness of a positive semi-definite Z means that
the implicit solutions will be well defined, and that when detZ < 0, with Hermitian Z,
we are sure that a zero-traction surface wrinkle exists, and is close by.

We note, however, that numerically for the model in question, a surface wrinkle exists
for every fiber orientation, within the parameters we explored. To verify the correctness of
the algorithm, we also reproduced the results found by Ciarletta et al.(2013) and Destrade
et al.(2008).

3.3. Predictions

For our simulations, we will set the material parameters in (2) to be C1 = 1, κ = 200
(to make the material virtually incompressible), and will study the effect of varying C2

and varying the fibres resistance to stretch AS and to compression AC in (4). To control
the fibre strength and resistance to stretch/compression separately we set (AS,AC) =
(S cos τ, S sin τ), where S is a constant.

For the standard fibre reinforcement model, AC = 0 and C2 = 0, the ratio of the fibre
strength has been estimated to be S/C1 = 20, 40, 80 for several biological tissues (De-
strade et al., 2008). So we will investigate the stability of fibre strength around the same
order and take the values S = 16, 32, and 64. For simplicity we begin by setting C2 = 0,
C1 = 1. The wrinkling patterns for S = 16 are shown in Figure 4, with τ = 0◦ (only resist
extension), τ = 45◦ (resist extension and compression equally) and τ = 90◦ (only resist
compression).

In Figure 5 we see how the stiffer the fibres (the larger S), the earlier the onset of
surface-wrinkles. This same effect was noticed for simple shear (Destrade et al., 2008;
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Figure 4. The graphs show the critical deformation φ∗ and wrinkle-front angle θ∗ for a surface-wrinkle to
appear with fibre angle A degrees from the X1 axes. The material parameters used were S = 16, C1 = 1,
C2 = 0, C3 = 200 and τ = 0◦, 45◦ and 90◦ correspond to the red, purple and blue curves, respectively.
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Figure 5. a) and b) are graphs of the onset of surface-wrinkles for fibres that only resist extension (τ = 0)
and compression (τ = π/2), respectively. For both plots, as the curves shade towards green, S takes the
values 16, 32 and 64. The dashed lines show when the fibres are most stretched (A = 45◦) or most
compressed (A = 90◦ + 45◦). The solid black line φ∗ = 50.75◦ shows when a wrinkle would appear if
there were no fibres.

Ciarletta et al., 2013). The dashed lines show when the fibres are along the direction
of greatest stretch A = 45◦ and greatest compression A = 90◦ + 45◦. We see that the
most distinctive difference is that fibres that only resist extension wrinkle earlier when
A = 45◦, while in comparison the fibres that only resist compression wrinkle earlier when
A = 90◦ + 45◦.

Figure 4b, showing A against θ∗, is harder to interpret. What relationship could one
expect between the angle of the fibres before deformation A and the angle of the wrinkle-
front θ∗ after deformation? We can make better sense of these results by using the current
angle of the fibres αS, and the compression counterpart αC . To find these angles we need
Fij = ∂xi/∂Xj, with xi’s for the shear-box given by Equations (30). Then αS and αC are
respectively the angles that mS = FM and mC = F−TM make with x1 axes,

αS = tan−1
(

tanA cosφ

tanA sinφ+ 1

)
and αC = tan−1

(
tanA− sinφ

cosφ

)
. (32)

11



Looking at AAijkl in equation (17) we can clearly see the importance of mS and mC .
Their angles can be understood qualitatively through the maps A→ αS(A, φ) and A→
αC(A, φ), where we can imagine that φ is fixed. When the fibres are along the direction
of greatest stretch in the reference, A = 45◦, both these maps bring 45◦ to the angle of
greatest stretch in the current configuration. The same applies to the direction of greatest
compression, that is both αS and αC map 45◦ + 90◦ to the angle of least stretch in the
current configuration. In general A→ αS(A, φ) takes points close to A = 45◦ and brings
them even closer to αS(45◦, φ), while it takes points close to A = 45◦ + 90◦ and repels
them from αS(45◦, φ). The map A→ αC(A, φ) has the opposite effect.

Using these maps and the same parameter range in Figure 5 we produce two new plots:
Figure 6a shows αS against θ∗ for fibres that resist extension and Figure 6b shows αC
against θ∗ for fibres that resist compression. These graphs have multiple discontinuities
and are even at times multivalued. From the theory there is no guarantee of a unique
wrinkle-front angle θ∗ and seemingly the stiffer the fibres, the more competing minima for
θ∗ appear. Figure 6 shows how the wrinkle-front angle θ∗ changes as the fibres become
stiffer (S increases). These graphs show a clear trend. In Figure 6a the angle between
αS and θ∗ alternates between being close to the three quanta θ∗ − αS = 90◦, 33.3◦ and
−33.3◦. Similarly, in Figure 6b the angle between αC and θ∗ alternates between the three
quanta θ∗ − αS = 0◦, 55◦ and −55◦. In both cases the stiffer the fibres, the more closely
θ∗ − αS and θ∗ − αC stay on their respective quanta. These same quanta, for both cases,
seem not to change as C2/C1 is increased from 0% to 100%.

The question that remains is how fibres with both AS 6= 0 and AC 6= 0 will behave.
Figure 7 answers that question, where AS = AC = 64 cos 45◦ and we have varied the
value of C2 so as to illustrate that C2 hardly affects the quanta. This time both the
graphs (αS, θ

∗) and (αC , θ
∗) are similar, and both gravitate around the quanta θ∗−αC =

0◦, 55◦/2+33.3◦/2, 90◦ and−55◦/2−33.3◦/2. For this reason Figure 7 only shows (αC , θ
∗).

Note that as C2 decreases the fibres get comparatively stiffer than the isotropic matrix
and again the curves get closer to the dashed lines. The values 55◦/2 + 33.3◦/2 and
−55◦/2 − 33.3◦/2 are half way between two of the quanta for AS = 0 and two of the
quanta for AC = 0, which indicates that a simple rule relating AS and AC to the resulting
quanta probably exists.

3.4. Asymptotics

We have found that varying the fibres’ resistance to compression and extension greatly
changes the surface wrinkle-front angle. So it is possible to characterize the fibres through
the surface wrinkles, but the calculations to do so are quite demanding. If approximations
could be developed to extract the key features in the wrinkling pattern, it might be enough
to characterize the fibres without computing the complete wrinkling graphs.

Based on the numerical experiments of Section 3.3, an attractive choice is to ap-
proximate αS − θ, or αC − θ, defined by Equations (32), as being constant. A further
simplification is to only investigate fibres that are approximately along the most and least
stretched directions. For it is in these directions that a change in AS and AC most affects
the critical deformation φ∗. Another reason to make this simplification is that for simple
shear, αS becomes asymptotic to the direction of greatest stretch (Ciarletta et al., 2013)
when αS − θ ≈ 90◦.

Here we will only indicate how to formulate these approximations for a general homo-
geneous deformation. To simplify the calculations, we choose a coordinate system such
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Figure 6. a) is a graph of the current fibre angle αS against the wrinkle-front angle θ∗ for a material
with fibres that only resist extension. The dashed lines are either θ∗ − αS = 90◦, 33.3◦ or −33.3◦. b) is
a graph of the current compressive fibre angle αC against the wrinkle-front angle θ∗ for a material with
fibres that only resist compression. The dashed lines are either θ∗−αS = 0◦, 55◦ or −55◦. In both cases
the solid black line is given by θ∗ = 109.6◦ and is the wrinkle-front angle if there were no fibres.

that the deformation gradient F is diagonalized, with Fii = λi for i = 1, 2, 3 and the
λi’s are the principal stretches. Let λ3 > λ1 and let λ2 correspond to a stretch which is
orthogonal to the plane of the fibres, so that M = (cosA, 0, sinA). This way the current
fibre angles αS and αC , measured from the x1 axis, are

αS = arctan

(
λ3 sinA

λ1 cosA

)
and αC = arctan

(
λ1 sinA

λ3 cosA

)
. (33)

As an example, we will approximate αC as being the angle of the direction of greatest
stretch and approximate θ − αC = 0, this would respectively translate to

αC = π/2 + δα π and αC = θ + επ, (34)
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Figure 7. Shows a graph of (αC , θ
∗) for fibres with AS = AC = 64 cos 45◦. The dashed lines are either

θ∗−αC = 0◦, 90◦, 33.3◦/2 + 55◦/2 or −33.3◦/2− 55◦/2. The solid black line is given by θ∗ = 109.6◦ and
is the wrinkle-front angle if there were no fibres.

for δα and ε2 small. Both these approximations hold true for a portion of every numerical
experiment discussed in Section 3.3. From the first of these approximations we deduce
that,

cosA = ±δα πλ1
λ3

+O(δα3) and sinA = 1− π2δα2

2

λ21
λ23

+O(δα3). (35)

From both approximations (34) we deduce that θ = π/2 + (δα − ε)π, where we rename
δα− ε = δθ, resulting in

cos θ = −δθπ +O(δθ3) and sin θ = 1− δθ2π2

2
+O(δθ3). (36)

Suppose that λ1, λ2 and λ3 are parametrized by some magnitude of deformation ϕ. These
approximations can then be used in the incremental moduli Aijkl, from which we obtain
the matrices T = T(δα, δθ, ϕ), R = R(δα, δθ, ϕ) and Q = Q(δα, δθ, ϕ) for the Riccati
equation (27). Truncating the resulting Riccati equation for some order in δα and δθ
may lead to analytic results, or at least greatly simplify the application of the Riccati
method 3.2, as both δα and δθ need only have a small range.

4. Conclusion

There is a clear need for more complete models of fibre reinforced materials. Here we have
pointed a way to include both anisotropic invariants in a simple physical way: through
one invariant that measures fibre stretch IS4 and another that measures fibre compression
IC4 . Giving a clear meaning to the anisotropic invariants makes it is easier to design
specific models, and perhaps to fit parameters from experiments, as varying AS and AC
dramatically changes the material’s response. We also explained a method for using the
Riccati equation to calculate surface-wrinkles.
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A striking phenomena was revealed when studying the onset of surface-wrinkles: the
difference between the current fibre orientation and the wrinkle orientation αS − θ∗,
and αC − θ∗, tends to only occupy 3 or 4 possible discrete values, see Figure 7. This
simple behaviour must have a simple underlying explanation. One possible avenue would
be to develop asymptotic solutions, as suggested in Section 3.4. Explaining this quanta
phenomena could lead to a simple method for approximately calculating surface wrinkles
for anisotropic materials, and therefore lead to an efficient way to characterize fibre
reinforced soft solids by how they form surface-wrinkles.
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