
Math. Program., Ser. A (2016) 155:81–103
DOI 10.1007/s10107-014-0827-4

FULL LENGTH PAPER

Higher-order reverse automatic differentiation
with emphasis on the third-order

R. M. Gower · A. L. Gower

Received: 22 June 2013 / Accepted: 10 October 2014 / Published online: 29 October 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract It is commonly assumed that calculating third order information is too
expensive for most applications. But we show that the directional derivative of the
Hessian (D3 f (x) · d) can be calculated at a cost proportional to that of a state-of-the-
art method for calculating the Hessian matrix. We do this by first presenting a simple
procedure for designing high order reverse methods and applying it to deduce several
methods including a reverse method that calculates D3 f (x) ·d. We have implemented
this method taking into account symmetry and sparsity, and successfully calculated
this derivative for functions with a million variables. These results indicate that the use
of third order information in a general nonlinear solver, such as Halley–Chebyshev
methods, could be a practical alternative toNewton’smethod. Furthermore, high-order
sensitivity information is used in methods for robust aerodynamic design. An efficient
high-order differentiation tool could facilitate the use of similar methods in the design
of other mechanical structures.

Keywords Automatic differentiation · High-order methods · Tensors vector
products · Hessian matrix · Sensitivity analysis

Mathematics Subject Classification 15A69 (Tensor products) · 65D25 (Numerical
differentiation) · 65F50 (Sparse matrices) · 49Q12 (Sensitivity analysis)

R. M. Gower (B)
Maxwell Institute for Mathematical Sciences, School of Mathematics,
University of Edinburgh, Edinburgh, UK
e-mail: gowerrobert@gmail.com

A. L. Gower
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway, Galway, Ireland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-014-0827-4&domain=pdf

82 R. M. Gower, A. L. Gower

1 Introduction

Derivatives permeate mathematics and engineering right from the first steps of cal-
culus, which together with the Taylor series expansion is a central tool in designing
models and methods of modern mathematics. Despite this, successful methods for
automatically calculating derivatives of n-dimensional functions is a relatively recent
development. Perhapsmost notably amongst recentmethods is the advent of automatic
differentiation (AD), which has the remarkable achievement of the “cheap gradient
principle”, wherein the cost of evaluating the gradient is proportional to that of the
underlying function [1]. This AD success is not only limited to the gradient, there
also exists a number of efficient AD algorithms for calculating Jacobian [2,3] and
Hessian matrices [4,5], that can accommodate for large dimensional sparse instances.
The same success has not been observed in calculating higher order derivatives.

The assumed cost in calculating high-order derivatives drives the design ofmethods,
typically favouring the use of lower-order methods. In the optimization community
it is generally assumed that calculating any third-order information is too costly, so
the design of methods revolves around using first and second order information. We
will show that third-order information can be used at a cost proportional to the cost
of calculating the Hessian. This has an immediate application in third-order nonlinear
optimization methods such as the Chebyshev–Halley Family [6] that require calculat-
ing the directional derivative of the Hessian matrix D3 f (x) · d, for a given x, d ∈ R

n

and f ∈ C3(Rn,R). Though much theory has been examined on the semi-local con-
vergence of members of Halley–Chebyshev family [7–10], it is still unclear how it’s
domain of convergence compares to that of Newton’s method. On one dimensional
real and complex equations, where high-order derivatives become trivial, tests have
pointed to a larger basin of convergence to roots when applying Halley–Chebyshev
methods as compared to Newton’s method [11,12]. While finding the solution to non-
linear systems inRn , there have been a number of successful, albeit limited, tests of the
Halley–Chebyshev family, see [13–15] for tests of a modern implementation. These
tests indicate that there exist unconstrained problems for which these third-ordermeth-
ods converge with a lower runtime, despite the fact that the entire third-order derivative
tensor D3 f (x) is calculated at each iteration. We present a method that calculates the
directional derivative D3 f (x) · d using only matrix arithmetic, and without the need
to form or store the entire third-order tensor. For problems of large dimension, this is a
fundamental improvement over calculating the entire tensor. Furthermore, there lacks
reports of a significant battery of tests to affirm any practical gain in using this third-
order family over Newton’s method. Efficient automatic third-order differentiation
tools would greatly facilitate such tests.

Still within optimization, third-order derivatives are being used in robust aero-
dynamic design with promising results [16,17]. With the development of efficient
automatic tools for calculating high-order derivatives, this success could be carried
over to optimal design of other mechanical structures [18]. Third-order derivatives of
financial options are also being considered to design optimal hedging portfolios [19].

The need for higher order differentiation also finds applications in calculating
quadratures [20,21], bifurcations and periodic orbits [22]. In the fields of numeri-
cal integration and solution of PDE’s, a lot of attention has been given to refining and

123

Higher-order reverse automatic differentiation 83

adapting meshes to then use first and second-order approximations over these meshes.
An alternative paradigm would be to use fixed coarse meshes and higher approxima-
tions. With the capacity to efficiently calculate high-order derivatives, this approach
could become competitive and lift the fundamental deterrent in higher-order methods.

Current methods for calculating derivatives of order three or higher in the AD com-
munity typically propagate univariate Taylor series [23] or repeatedly apply the tangent
and adjoint operations [24]. In these methods, each element of the desired derivative
is calculated separately. If AD has taught us anything it is that we should not treat
elements of derivatives separately, for their computation can be highly interlaced. The
cheap gradient principle illustrates this well, for calculating the elements of the gradi-
ent separately yields a time complexity of n times that of simultaneously calculating
all entries. This same principle should be carried over to higher order methods, that
is, be wary of overlapping calculations in individual elements. Another alternative
for calculating high order derivatives is the use of forward differentiation [25]. The
drawback of forward propagation is that it calculates the derivatives of all intermediate
functions, in relation to the independent variables, evenwhen these do not contribute to
the desired end result. For these reasons, we look at calculating high-order derivatives
as a whole and focus on reverse AD methods.

An efficient alternative to AD is that the end users hand code their derivatives.
Though with the advent of evermore complicated models, this task is becoming
increasingly error prone, difficult to write efficient code, and boring. This approach
also rules out methods that use high order derivatives, for no one can expect the end
user to code the total and directional derivatives of high order tensors.

The article flows as follows, first we develop algorithms that calculate derivatives
in a more general setting, wherein our function is described as a sequence of composi-
tions of maps, Sect. 2. We then use Griewank and Walther’s [1] state-transformations
in Sect. 3, to translate a composition of maps into an AD setting and an efficient imple-
mentation. Numerical tests are presented in Sect. 4, followed by our conclusions in
Sect. 5.

2 Derivatives of sequences of maps

In preparation for theADsetting,wefirst develop algorithms for calculating derivatives
of functions that can be broken into a composition of operators

F(x) = �� ◦ ��−1 ◦ · · · ◦ �1(x). (1)

for � i ’s of varying dimension: �1(x) ∈ C2(Rn,Rm1) and � i (x) ∈ C2(Rmi−1 ,Rmi),
each mi ∈ N and for i = 2, . . . , �, so that F : Rn → R

m� . From this we define a
functional f (x) = yTF(x), where y ∈ R

m� , and develop methods for calculating
the gradient ∇ f (x) = yT DF(x), the Hessian D2 f (x) = yT D2F(x) and the tensor
D3 f (x) = yT D3F(x).

For a givend ∈ R
n , we also developmethods for the directional derivative DF(x)·d,

D2F(x) · d, the Hessian-vector product D2 f (x) · d = yT D2F(x) · d and the tensor-

123

84 R. M. Gower, A. L. Gower

vector product D3 f (x) ·d = yT D3F(x) ·d. Notation will be gradually introduced and
clarified as is required, including the definition of the preceding directional derivatives.

2.1 First-order derivatives

Taking the derivative of F, Eq. (1), and recursively applying the chain rule, we get

yT DF = yT D��D��−1 · · · D�1. (2)

Note that yT DF is the transpose of the gradient ∇(yTF). For simplicity’s sake, the
argument of each function is omitted in (2), but it should be noted that D� i is evaluated
at the argument (� i−1 ◦ · · · ◦�1)(x), for each i from 1 to �. In Algorithm 1, we record
each of these arguments and then calculate the gradient of yTF(x)with what’s called a
reverse sweep. Reverse, for it transverses the maps from the last�� to the first�1, the
opposite direction in which (1) is evaluated. The intermediate stages of the gradient
calculation are accumulated in the vector v, its dimension changing from one iteration
to the next. This will be a recurring fact in the matrices and vectors used to store the
intermediate phases of the archetype algorithms presented in this article.

Algorithm 1: Archetype Reverse Gradient.

initialization: v0 = x , v = y
for j = 1, . . . , � − 1 do

v j ← � j ◦ v j−1

end
for i = �, . . . , 1 do

vT ← vT D� i ◦ vi−1

end
Output: yT DF(x) = vT

For convenience,we define the operator Di as the partial derivative in i-th argument.
This way, for any function g(z), the directional derivative of g(z) in the direction d,
becomes

Dg(z) · d = Dig(z)di , (3)

where we have omitted the summation symbol for i , and instead, use Einstein notation
where a repeated index implies summation over that index.

We use this notation throughout the article unless otherwise stated. Again using the
chain rule and (1), we find

DF · d = D��D��−1 · · · D�1 · d,

where we have omitted the arguments. This can be efficiently calculated using a
forward sweep of the computational graph shown in Algorithm 2. This algorithm is a
direct application of the chain rule.

123

Higher-order reverse automatic differentiation 85

Algorithm 2: Archetype 1st Order Directional Derivative.
initialization: v0 = x , v̇0 = d
for i = 1, . . . , � do

vi ← �i ◦ vi−1

v̇i ← D�i (vi−1)v̇i−1

end
Output: DF(x) · d = v̇�

2.2 Second-order derivatives

Here we develop a reverse algorithm for calculating the Hessian D2(yTF(x)). First
we determine the Hessian for F as a composition of two maps, then we use induction
to design a method for when F is a composition of � maps.

For F(x) = �2 ◦ �1(x) and � = 2, we find the Hessian by differentiating in the
j-th and k-th coordinate,

Djk(yi Fi) = (yi Drs�
2
i)Dj�

1
r Dk�

1
s + (yi Dr�

2
i)Djk�

1
r , (4)

where the arguments have been omitted. So the (j, k) component of the Hessian
[D2(yTF)] jk = Djk(yTF). The higher the order of the derivative, the more messy
component notation becomes. A way around this issue is to use a tensor notation,
where for every function g(z) we define

D2g(z) · (v,w) := Djkg(z)v jwk,

and

(D2g(z) · w) · v := D2g(z) · (v,w), (5)

for any function g(z) and compatible vectors v and w. In general,

[D2g(z) · (�,�)]t2···tq s2···sp := Dt1s1g(z)�t1t2···tq�s1s2···sp , (6)

and

(D2g(z) · �) · � := D2g(z) · (�,�) (7)

for any compatible � and � . Using a matrix notation for a composition of maps can
be aesthetically unpleasant. Using this tensor notation the Hessian of yTF, see Eq. (4),
becomes

yT D2F = yT D2�2 · (D�1, D�1) + yT D�2 · D2�1 . (8)

We recursively use the identity (8) to design Algorithm 3 that calculates the Hessian of
a function yTF(x) composed of �maps, as defined in Eq. (1). Algorithm 3 corresponds

123

86 R. M. Gower, A. L. Gower

to a very particular way of nesting the derivatives of the �i ’s maps, as detailed in [4].
Though the proof that Algorithm 3 produces the desired Hessian matrix is rather
convoluted, thus following Algorithm 3 we present a far simpler proof.

Algorithm 3: Archetype Reverse Hessian.
initialization: v0 = x , v = y, W = 0 ∈ R

m�×m�

for j = 1, . . . , � − 1 do
v j ← � j ◦ v j−1

end
for i = �, . . . , 1 do

W ← W · (D�i (vi−1), D�i (vi−1))

W ← W + vT D2�i (vi−1)

vT ← vT D�i (vi−1)
end
Output: yT D2F ← W, yT DF ← vT

Proof of Algorithm 3 We will use induction on the number of compositions �. For
� = 1 the output is W = yT D2�1(x). Now we assume that algorithm 3 is correct for
functions composed of � − 1 maps, and use this assumption to show that for � maps
the output is W = yT D2F(x). Let

yT X = yT�� ◦ · · · ◦ �2,

so that yTF = yT X ◦ �1. Then at the end of the iteration i = 2, by the chain rule,
vT = yT DX (v1) and, by induction, W = yT D2X (v1). This way, at termination, or
after the iteration i = 1, we get

W = yT D2X (v1) · (D�1(x), D�1(x)) + yT DX (v1) · D2�1(x)

= yT D2(X ◦ �1(x))
[
Eq. (8)

]

= yT D2F(x).

�	
2.3 Third-order methods

We define the directional derivative as

lim
t→0

d

dt
D2g(z + td) = Djkmg(z)dm =: D3g(z) · d, (9)

for any function g and compatible vector d. This tensor notation facilitates working
with third-order derivatives as using matrix notation would lead to confusing equa-
tions and possibly hinder intuition. The notation conventions from before carries over
naturally to third-order derivatives, with

(D3g(z) · (�,�,♦))t2...tq s2...spl2...lr := Dt1s1l1g(z)�t1...tq�s1...sp♦l1...lr , (10)

123

Higher-order reverse automatic differentiation 87

and

D3g(z) · (�,�,♦) = (D3g(z) · ♦) · (�,�) = ((D3g(z) · ♦) · �) · �, (11)

for any compatible�,� and♦. TheHessian of a composition of twomapsF = �2◦�1

is given by Eq. (8), we can use the above to calculate the directional derivative of this
Hessian,

yT D3F · d = D
(
yT D2�2 · (D�1, D�1)

)
· d + D

(
(yT D�2) · D2�1

)
· d

= (yT D3�2 · D�1 · d) · (D�1, D�1)+(yT D2�2) · (D�1, D2�1 · d)

+ (yT D2�2) · (D2�1 · d, D�1) + (yT D�2) · D3�1 · d
+ (yT D2�2 · D�1 · d) · D2�1,

which after some rearrangement gives

yT D3F · d = yT D3�2 · (D�1, D�1, D�1 · d) + yT D�2 · D3�1 · d
+ yT D2�2 ·

(
(D�1, D2�1 · d) + (D2�1 · d, D�1)

+(D2�1, D�1 · d)
)

. (12)

As usual, we have omitted all arguments to the maps. The above applied recursively
gives us the Reverse Hessian Directional Derivative Algorithm 4, or RevHedir for
short. To prove that RevHedir produces the desired output, we use induction with
Xm = yT�� ◦ · · · ◦ �m and work backwards from m = � towards m = 1 to calculate
yT D3F(x) · d.

Algorithm 4: Archetype Reverse Hessian Directional Derivative (RevHedir)

initialization: v0 = x , v̇0 = d, v = y,W = Td = 0 ∈ R
m�×m�

for j = 1, . . . , � − 1 do
v j ← � j ◦ v j−1

v̇ j ← D� j (v j−1) · v̇ j−1

end
for i = �, . . . , 1 do

Td ← Td · (D�i (vi−1), D�i (vi−1))

Td ← Td + W · (D�i (vi−1), D2�i (vi−1) · v̇i−1)

Td ← Td + W · (D2�i (vi−1) · v̇i−1, D�i (vi−1))

Td ← Td + W · (D2�i (vi−1), D�i (vi−1) · v̇i−1);
Td ← Td + vT D3�i (vi−1) · v̇i−1

W ← W · (D�i (vi−1), D�i (vi−1)) + vT D2�i (vi−1)

vT ← vT D�i (vi−1)
end
Output: yT D3F(x) · d ← Td, yT D2F ← W, yT DF ← vT

Proof of Algorithm 4 Our induction hypothesis is that at the end of the i = m iteration
Td = yT D3Xm(vm−1) · v̇m−1. After the first iteration i = � of the second loop, paying
attention to the initialization of the variables, we have that

123

88 R. M. Gower, A. L. Gower

Td = vT D3��(v�−1) · v̇�−1 = yT D3X�(v�−1) · v̇�−1.

Now suppose the hypothesis is true for iterations up to m + 1, so that at the beginning
of the i = m iteration Td = yT D3Xm+1(vm) · v̇m . To prove the hypothesis we need
the following results: at the end of the i = m iteration

vT = yT DXm(vm−1) and W = yT D2Xm(vm−1), (13)

both are demonstrated in the proof of Algorithm 3. Now we are equipt to examine Td
at the end of the i = m iteration,

Td ←Td · (D�m(vm−1), D�m(vm−1)) + W · (D�m(vm−1), D2�m(vm−1) · v̇m−1)

+ W · (D2�m(vm−1) · v̇m−1, D�m(vm−1))

+ W · (D2�m(vm−1), D�m(vm−1) · v̇m−1) + vT D3�m(vm−1) · v̇m−1.

Now we use the induction hypothesis followed by property (11) to get

Td · (D�m(vm−1), D�m(vm−1))

= yT D3Xm+1(vm) · v̇m · (D�m(vm−1), D�m(vm−1))

= yT D3Xm+1(vm) ·
(
D�m(vm−1), D�m(vm−1), v̇m

)
,

and v̇m = D�m(vm−1) · v̇m−1. Then using Eq. (13) to substitute W and vT we arrive
at

Td = yT D3Xm+1(vm) ·
(
D�m(vm−1), D�m(vm−1), D�m(vm−1) · v̇m−1

)

+ yT D2Xm(vm−1) · (D�m(vm−1), D2�m(vm−1) · v̇m−1)

+ yT D2Xm(vm−1) · (D2�m(vm−1) · v̇m−1, D�m(vm−1))

+ yT D2Xm(vm−1) · (D2�m(vm−1), D�m(vm−1) · v̇m−1)

+
(
yT DXm(vm−1)

)
D3�m(vm−1) · v̇m−1

= yT D3Xm(vm−1) · v̇m−1 [Using Eq. (12)].

Finally, after iteration i = 1, we have

Td = yT D3X1(x) · v̇0 = yT D3F(x) · d.

�	
As is to be expected, in the computation of the tensor-vector product, only

2-dimensional tensor arithmetic, or matrix arithmetic, is used, and it is not neces-
sary to form a 3-dimensional tensor. This is different from current hand-coded imple-
mentations of this tensor-vector product used in high-order methods [13–15]. In these

123

Higher-order reverse automatic differentiation 89

articles, the entire third-order tensor yT D3F(x) is formed then contractedwith a vector
d.

If the entire yT D3F(x) tensor is required, then 3-dimensional arithmetic is unavoid-
able. A reverse method for calculating the entire third-order tensor yT D3F(x) is given
in the final archetype algorithm. For this, we want an expression for the third-order
derivative such that

lim
t→0

d

dt
yT D2F(x + td) = yT D3F(x) · d, (14)

for any vector d. From Eq. (12) we see that d is contracted with the last coordinate in
every term except one. To account for this term, we need a switching tensor S such that

yT D2�2 · (D2�1 · d, D�1) = yT D2�2 · (D2�1, D�1) · S · d,

in other words we define S as

S · (v,w, z) = (v, z, w) or Sabci jkviw j zk = vazbwc, (15)

for any vectors v, w and z. This implies that S’s components are Sabci jk = δaiδcjδbk ,
where δnm = 1 if n = m and 0 otherwise. Then for F = �2 ◦ �1 we use Eq. (12) to
reach

yT D3F · d =
(
yT D3�2 · (D�1, D�1, D�1) + yT D�2 · D3�1

+ yT D2�2 ·
(
(D�1, D2�1) + (D2�1, D�1) · S + (D2�1, D�1)

))
· d,

(16)

as this is true for every d, we can remove d from both sides to arrive at yT D3F. With
this notation we have, as expected, (yT D3F)i jk = yT Di jkF. We can now use this
result to build a recurrence for D3Xm , with Xm = yT�� ◦ · · · ◦ �m , working from
m = � backwards towards m = 1 to calculate yT D3F(x), as is done in algorithm 5.

Algorithm 5: Archetype Reverse Third Order Derivative
initialization: v0 = x , v = y,W = 0 ∈ R

m�×m� , T ∈ R
m�×m�×m�

for j = 1, . . . , � − 1 do
v j ← � j ◦ v j−1

end
for i = �, . . . , 1 do

T ← T · (D�i (vi−1), D�i (vi−1), D�i (vi−1))

T ← T + W · (
(D�i (vi−1), D2�i (vi−1)) + (D2�i (vi−1), D�i (vi−1))

)

T ← T + W · (D2�i (vi−1), D�i (vi−1)) · S + vT D3�i (vi−1)

W ← W · (D�i (vi−1), D�i (vi−1)) + vT D2�i (vi−1)

vT ← vT D�i (vi−1)
end
Output: yT D3F(x) ← T, yT D2F ← W, yT DF ← vT

123

90 R. M. Gower, A. L. Gower

Proof of Algorithm 5 the demonstration can be carried out in an analogous fashion to
the proof of Algorithm 4.

The method presented for calculating second and third order derivatives can be
extended to design algorithms of arbitrarily higher orders. To do so would require a
closed expression for any order derivatives of a composition of twomaps (�2◦�1(x)),
found in [26], which is too long to reproduce here. Though we can see from this
closed expression in [26] that the number of terms needed to be calculated grows
combinatorially in the order of the derivative, thus posing a lasting computational
challenge. �	

3 Implementing through state transformations

When coding a function, the user would not write a composition of maps, such as
shown in previous sections, see Eq. (1). Instead users implement functions in a number
of different ways. AD packages standardize these hand written functions, through
compiler tools and operator overloading, into an evaluation that fits the format of
Algorithm 6. As an example, consider the function f (x1, x2, x3) = x1x2 sin(x3), and
its evaluation for a given (x1, x2, x3) through the following list of commands

v−2 = x1
v−1 = x2
v0 = x3
v1 = v−2v−1

v2 = sin(v0)

v3 = v2v1.

By naming the functions φ1(v−2, v−1) := v−2v−1, φ2(v0) := sin(v0) and
φ3(v2, v1) := v2v1, this evaluation is the same as done by Algorithm 6.

In general, each φi is an elemental function such as addition, multiplication, sin(·),
exp(·), etc, which together with their derivatives are already coded in the AD package.
In order, the algorithm first copies the independent variables xi into internal interme-
diate variables vi−n, for i = 1, . . . , n. Following convention, we use negative indexes
for elements that relate to independent variables. For consistency, we will shift all
indexes of vectors and matrices by −n from here on, e.g., the components of x ∈ R

n

are xi−n for i = 1 . . . n.

The next step in Algorithm 6 calculates the value v1 that only depends on the inter-
mediate variablesvi−n, for i = 1, . . . , n. In turn, the valuev2 maynowdependonvi−n,

for i = 1, . . . , n + 1, then v3 may depend on vi−n, for i = 1, . . . , n + 2 and so on for
all � intermediate variables. Each vi is calculated using only one elemental function φi .

This procedure at each step establishes a dependency among the intermediate vari-
ables vi for i = 1, . . . , �. We say that j is a predecessor of i if v j is needed to calculate
vi , that is, if v j is an argument of φi . This way we let P(i) be the set of predecessors
of i , and vP(i) a vector of the predecessors, so that φi (vP(i)) = vi . Note that j ∈ P(i)
implies that j < i . Analogously, we can define S(i) as the set of successors of i .

123

Higher-order reverse automatic differentiation 91

Algorithm 6: Function evaluation
Input: vi−n = xi , for i = 1, . . . n
for i = 1 . . . � do

vi ← φi (vP(i))

end
Output: f (x) ← v�

We can bridge this algorithmic description of a function with that of compositions
of maps (1) using Griewank and Walther’s [1] state-transformations

�i : Rn+� → R
n+�,

v
→ (v1−n, . . . , vi−1, φi (vP(i)), vi+1, . . . , v�)
T , (17)

for i = 1, . . . �, where v is a vector with components vi . In components,

�i
r (v) = vr (1 − δri) + δriφi (vP(i)), (18)

where here, and in the remainder of this article, we abandon Einstein’s notation of
repeated indexes, because having the limits of summation is important when imple-
menting. With this, the value f (x) given by Algorithm 6 can be written as

f (x) = eT�+n�
� ◦ ��−1 ◦ · · · ◦ �1 ◦ (PT x), (19)

where e�+n is the (� + n)th canonical vector and P is the immersion matrix [I 0]
with I ∈ R

n×n and 0 ∈ R
n×�. The Jacobian of the i th state transformation �i , in

coordinates, is simply

Dj�
i
r (v) = δr j (1 − δri) + δri

∂φi

∂v j
(vP(i)). (20)

With the state-transforms and the structure of their derivatives, we look again at a
few of the archetype algorithms in Sect. 2 and build a corresponding implementable
version. Our final goal is to implement the RevHedir algorithm 4, for which we
need the implementation of the reverse gradient and Hessian algorithms.

3.1 First-order derivatives

To design an algorithm to calculate the gradient of f (x), given in Eq. (19), we turn
to the Archetype Reverse Gradient Algorithm 1 and identify1 the �i ’s in place of the
� i ’s. Using (20) we find that vT ← vT D�i becomes

v̄ j ← v̄ j (1 − δi j) + v̄i
∂φi

∂v j
(vP(i)) ∀ j ∈ {1 − n, . . . , �} (21)

1 Specifically PT would be �1 and �i would be �i+1.

123

92 R. M. Gower, A. L. Gower

where v̄i is the i-th component of v, also known as the i-th adjoint in the AD literature.
Note that if j �= i in the above, then the above step will only alter v̄ j if j ∈ P(i).
Otherwise if j = i , then this update is equivalent to setting v̄i = 0. We can disregard
this update, as v̄i will not be used in subsequent iterations. This is because i /∈ P(m),
form ≤ i .With these considerations, we arrive at the algorithm 7, the component-wise
version of algorithm 1. Note how we have used the abbreviated operation a+ = b
to mean a ← a + b. Furthermore, the last step ∇ f ← vT PT selects the adjoints
corresponding to independent variables.

An abuse of notation that we will employ throughout, is that whenever we refer to
v̄i in the body of the text, we are referring to the value of v̄i after iteration i of the
Reverse Gradient algorithm has finished.

Algorithm 7: Reverse Gradient.
Input: v = en+� ∈ R

�+n , vi−n = xi , for i = 1, . . . n
for i = 1 . . . � do

vi ← φi (vP(i))

end
for i = �, . . . , 1 do

for j ∈ P(i) do v̄ j+ = v̄i ∂φi (vP(i))/∂v j
end
Output: ∇ f ← vT PT = (v̄1−n , . . . , v̄0)

T

Similarly, by using (20) again, each iteration i of the Archetype 1st Order Direc-
tional Derivative Algorithm 2, can be reduced to a coordinate form

v̇r ← (1 − δri)v̇r + δri
∑

j∈P(i)

v̇ j
∂φi

∂v j
(vP(i)),

where v̇ j is the j-th component of v̇. If r �= i in the above, then v̇r remains unchanged,
while if r = i then we have

v̇i ←
∑

j∈P(i)

v̇ j
∂φi

∂v j
(vP(i)). (22)

We implement this update by sweeping through the successors of each intermediate
variable and incrementing a single term to the sum on the right-hand side of (22), see
Algorithm 8. It is crucial to observe that the i-th component of v̇ will remain unaltered
after the i-th iteration.

Again, whenwe refer to v̇i in the body of the text from this point on, we are referring
to the value of v̇i after iteration i has finished in Algorithm 8.

Though we have included the explicit argument vP(i) of each φi function and each
derivative of φi in this section, we now omit this argument from now on to avoid a
cluttered notation.

123

Higher-order reverse automatic differentiation 93

Algorithm 8: 1st Order Directional Derivative.
initialization: v̇ = PT d ∈ R

�+n , vi−n = xi , for i = 1, . . . n
for j = 1, . . . , � do

v j ← φ j (vP(j))

for i ∈ S(j) do v̇i+ = v̇ j ∂φi (vP(i))/∂v j
end
Output: DF · d = [v̇1−n , . . . , v̇�]

3.2 Second-order derivatives

Just by substituting � i s for �i s in the Archetype Reverse Hessian, Algorithm 3,
we can quickly reach a very efficient component-wise algorithm for calculating the
Hessian of f (x), given in Eq. (19). This component-wise algorithm is also known as
edge_pushing, and has already been detailed in Gower and Mello [4]. Here we
use a different notation which leads to a more concise presentation. Furthermore, the
results below form part of the calculations needed for third order methods.

There are two steps of Algorithm 3 we must investigate, for we already know how
to update v from the above section. For these two steps, we need to substitute

Djk�
i
r (v) = ∂2�i

r

∂v j∂vk
(v) = δri

∂2φi

∂v j∂vk
(vP(i)), (23)

and D�i , Eq. (20), in W ← W · (D�i , D�i) + vT D2�i , resulting in

Wjk ←
�∑

s,t=1−n

∂�i
s

∂v j
Wst

∂�i
t

∂vk
+

�∑

s=1−n

v̄s
∂2�i

s

∂v j∂vk

=(1 − δ j i)Wjk(1 − δki) + ∂φi

∂v j
Wii

∂φi

∂vk

+ ∂φi

∂v j
Wik(1 − δki) + (1 − δ j i)Wji

∂φi

∂vk
(24)

+ v̄i
∂2φi

∂v j∂vk
, (25)

where Wjk is the jk component of W. Before translating these updates into an algo-
rithm, we need a crucial result: at the beginning of iteration i − 1, the element Wjk is
zero if j ≥ i for all k.We show this by using induction on the iterations of Algorithm 3.
Note that W is initially set to zero, so for the first iteration i = � both (24) and (25)
reduce to

Wjk ← v̄�

∂2φ�

∂v j∂vk
,

which is zero for j = � because � /∈ P(�). Now we assume the induction hypothesis
holds at the beginning of the iteration i , so that Wjk = 0 for j ≥ i + 1. So letting
j ≥ i + 1 and executing the iteration i we get from the updates (24)and (25)

123

94 R. M. Gower, A. L. Gower

Wjk ← Wjk + Wji
∂φi

∂vk
,

because j /∈ P(i) so ∂φi/∂v j = 0. Together with our hypothesis Wjk = 0 and
Wji = 0, we see that Wjk remains zero. While if j = i , then (24) and (25) sets
Wjk ← 0 because i /∈ P(i). Hence at the beginning of iteration i − 1 we have that
Wjk = 0 for j ≥ i and this completes the induction.

Furthermore, W is symmetric at the beginning of iteration i because it is initialized
toW = 0 and each iteration preserves symmetry. ConsequentiallyWjk is only updated
when both j, k ≤ i. We make use of this symmetry to avoid unnecessary calculations
on symmetric counterparts.

Let W{k j} = W{ jk} denote both Wjk and Wkj . We rewrite update (24) and (25)
considering only j, k < i , for Wjk only gets updated if j, k ≤ i and when j = i or
k = i we know thatWjk = 0 at the end of iteration i . The first two terms of update (24)
become,

W{ jk}+ = ∂φi

∂v j
W{i i}

∂φi

∂vk
.

The next two terms can be written as

W{ jk}+ = ∂φi

∂v j
W{ik} and W{k j}+ = ∂φi

∂vk
W{i j}. (26)

Note that these two are the same with j changed for k. If j �= k we can replace both
these operations with just

W{ jk}+ = ∂φi

∂v j
W{ik}, (27)

if we apply this update for every j, k < i and consider that W{ jk} and W{k j} represent
the same number.

If j = k these two operations become

W{ j j}+ = 2
∂φi

∂v j
W{ik}.

The updates (24) and (25) have been implemented with these above considera-
tions in the Pushing step in Algorithm 9. The names of the steps Creating and
Pushing are elusive to a graph interpretation [4].

3.3 Third-order derivatives

Thefinal algorithm thatwe translate to implementation is theHessian directional deriv-
ative, the RevHedirAlgorithm 4. This implementation has an immediate application
in the Halley–Chebyshev class of third-order optimization methods, for at each step
of these algorithms, such a directional derivative is required.

123

Higher-order reverse automatic differentiation 95

Algorithm 9: component-wise form of edge_pushing.
Input: Function evaluation 6, x ∈ R

n .

Initialization: v̄1−n = · · · = v̄�−1 = 0, v̄� = 1, W{ jk} = 0 for j , k ∈ {1 − n, . . . , �}, v j = x j for
j ∈ {1 − n, . . . , 0}, v1 = · · · = v� = 0, ;
Calculate and store vi , for i ∈ {1 − n, . . . , �} using Algorithm 6;
for i = �, . . . , 1 do

Pushing;
foreach k ≤ i such that W{ki} �= 0 do

if k < i then
foreach j ∈ P(i) do

if j = k then
W{ j j}+ = 2Djφi W{ j i}

else
W{ jk}+ = Djφi W{ki}

end
end

else k = i
foreach unordered pair { j, p} ⊂ P(i) do

W{ j p}+ = Dpφi D jφi W{i i}
end

end
end
Creating;
foreach unordered pair { j, p} ⊂ P(i) do

W{ j p}+ = v̄i Dpjφi
end
Adjoint;
foreach j ∈ P(i) do

v̄ j+ = v̄i D jφi
end

end
Output: D2 f = (

Wjk
)
1−n≤ j,k≤0

Identifying each � i with �i , we address each of the five operations on the matrix
Td in Algorithm 4 separately, pointing out how each one preserves the symmetry of
Td and how to perform the component-wise calculations.

First, given that Td is symmetric, the 2D pushing update

Td ← Td ·
(
D�i , D�i

)
, (28)

is exactly as detailed in (24) and the surrounding comments. While the update 3D
creating

Td ← Td + vT D3�i · v̇i−1,

can be written in coordinate form as

Td jk ← Td jk +
�∑

r,p=1−n

vr D jkp�
i
r v̇

i−1
p

= Td jk +
∑

p∈P(i)

vi
∂3φi

∂v j∂vk∂vp
v̇p, (29)

123

96 R. M. Gower, A. L. Gower

where v̇i−1
p is the p−th component of v̇i−1, v̇p is the output of Algorithm 8 and Td jk

is the jk component of Td. Note that v̇i−1
p = v̇p for p ∈ P(i), because p ≤ i − 1,

so on the iteration i − 1 of Algorithm 8 the calculation of v̇p will already have been
finalized. Another trick we employ is that, since the above calculation is performed on
iteration i , we know that v̄i has already been calculated. These substitutions involving
v̄i s and v̇i s will be carried out in the rest of the text with little or no comment. The
update (29) also preserves the symmetry of Td.

To examine the update,

Td ← Td + W ·
(
D�i , D2�i · v̇i−1

)
, (30)

we use (20) and (23) to obtain the coordinate form

Td jk ← Td jk +
�∑

r,s=1−n

Wrs

(
δr j (1 − δri) + δri

∂φi

∂v j

)
δsi

∂2φi

∂vk∂vp
v̇p

= Td jk + Wji (1 − δ j i)
∂2φi

∂vk∂vp
v̇p + Wii

∂φi

∂v j

∂2φi

∂vk∂vp
v̇p. (31)

Upon inspection, the update

Td ← Td + W ·
(
D2�i · v̇i−1, D�i

)

is the transpose of (31) due to the symmetry of W. So it can be written in coordinate
form as

Td jk ← Td jk + Wik(1 − δki)
∂2φi

∂v j∂vp
v̇p + Wii

∂φi

∂vk

∂2φi

∂v j∂vp
v̇p. (32)

Thus update (32) together with (31) gives a symmetry contribution to Td.
Last we translate

Td ← Td + W ·
(
D2�i , D�i · v̇i−1

)
, (33)

to its coordinate form

Td jk ← Td jk +
�∑

r,s=1−n

Wrsδri D jk�
i
r

(
δsp(1 − δsi) + δsi

∂φi

∂vp

)
v̇p

= Td jk + Wip
∂2φi

∂v j∂vk
(1 − δpi)v̇p + Wii

∂2φi

∂v j∂vk
Dpφi v̇p. (34)

No change is affected by interchanging the indices j and k on the right-hand side
of (34), so once again Td remains symmetric. For convenience of computing, we group
updates (31), (32) and (34) into a set of updates called 2D Connecting. The name

123

Higher-order reverse automatic differentiation 97

indicating that these updates “connect” objects that contain second order derivative
information.

More than just symmetric, by closely inspecting these operations we see that the
sparsity structure of Td is contained in the sparisty structure of W. This remains true
even after execution, at which point Td = D3 f (x) · d and W = D2 f (x) where, for
each j, k, p ∈ {1 − n, . . . , 0}, we have

Djk f (x) = 0 �⇒ Djkp f (x)dp = 0.

This fact should be explored when implementing the method, in that, the data structure
of Td should imitate that of W.

3.3.1 Implementing third-order directional derivative

The matrices Td and W are symmetric, and based on the assumption that they will
be sparse, we will represent them using a symmetric sparse data structure. Thus we
now identify each pair (Wjk,Wkj) and (Td jk, Tdkj) with the element W{ jk} and
Td{ jk}, respectively.Much like inedge_pushing, Algorithm9,wewant an efficient
implementation of the updates to Td{ jk} that only takes the contributions from nonzero
elements of Td{ik} and W{ik}, and does not repeat unnecessary calculations.

We must take care when updating our symmetric representation of Td, both for the
2D pushing update (28) and for the redundant symmetric counterparts (31) and (32)
which “double-up” on the diagonal, much like in the Pushing operations of Algo-
rithm 9. Each operation (31), (32) and (34) depends on a diagonal element W{i i} and
an off-diagonal elementW{ik} ofW, for k �= i . Grouping together all terms that involve
W{i i} we get the resulting update

Td{ jk}+ = W{i i}
∑

p∈P(i)

v̇p

(
∂φi

∂v j

∂2φi

∂vk∂vp
+ ∂φi

∂vk

∂2φi

∂v j∂vp
+ ∂φi

∂vp

∂2φi

∂v j∂vk

)
. (35)

Similar to how the update (26) was split into two updates (27), here by appropriately
renaming the indices in (31), (32) and (34), each nonzero off diagonal elements W{ik}
results in the updates (36), (37) and (38), respectively.

Td jk+ =
∑

p∈P(i)

v̇p
∂2φi

∂v j∂vp
Wik, ∀ j ∈ P(i) (36)

Tdkj+ =
∑

p∈P(i)

v̇p
∂2φi

∂v j∂vp
Wki , ∀ j ∈ P(i) (37)

Td jp+ =
∑

p∈P(i)

v̇k
∂2φi

∂v j∂vp
Wik, ∀ j ∈ P(i) (38)

123

98 R. M. Gower, A. L. Gower

Note that (36) and (37) are symmetric updates, and when j = k these two operations
“double-up” resulting in the update

Td j j+ = 2
∑

p∈P(i)

v̇p
∂2φi

∂v j∂vp
Wi j .

Passing to our symmetric notation, both (37) and (36) can be accounted for by
using (36) to update Td{ jk} over every j and k, where Td{ jk} = Td{k j}, and with
an exception for this doubling effect in Algorithm 10. Finally we can eliminate redun-
dant symmetric calculations performed in (38) by only performing this operation for
each pair { j, p}. All these considerations relating to 2D connecting have been
factored into our implementation of the RevHedir Algorithm 10.

Performing 3D Creating (29) using this symmetric representation is simply a
matter of not repeating the obvious symmetric counterpart, but instead, performing
these operations on Td{ jk} once for each appropriate pair { j, k}, see 3D Creating
in to Algorithm 10.

Algorithm 10: component-wise form of RevHedir.
Input: Function evaluation 6, x ∈ R

n .

Initialization: v̄1−n = · · · = v̄�−1 = 0, v̄� = 1, W{ jk} = 0 for j , k ∈ {1 − n, . . . , �}, v j = x j ,
Td{ jk} = 0 for j < k ∈ {1 − n, . . . , �}
Calculate and store v̇i and vi for i ∈ {1 − n, . . . , �} using Algorithm 8
for i = �, . . . , 1 do

2D Pushing of Td, see Pushing in Algorithm 9
2D Connecting
foreach p ∈ P(i), { j, k} ⊂ P(i) do

Td{ jk}+ = W{i i}v̇p
(
Djφi Dkpφi + Dkφi D jpφi + Dpφi D jkφi

)

end
foreach k < i,W{ik} �= 0 do

foreach (j, p) ∈ P(i)2 do
if j = k then

Td{kk}+ = 2W{ik}v̇pD jpφi
end
if j �= k then

Td{ jk}+ = W{ik}v̇pD jpφi
end
if j ≥ p then

Td{ j p}+ = W{ik}v̇k D jpφi
end

end
end
3D Creating
foreach p ∈ P(i), { j, k} ⊂ P(i) do

Td{ jk}+ = vi D jkpφi v̇p

end
Pushing and creating applied to W , see Algorithm 9
Adjoint Iteration applied to v̄, see Algorithm 7

end
Output: (D3 f (x) · d) jk = Td{ jk}, D2 f (x) jk = W{ jk}
for each j ≤ k ∈ {1 − n, . . . , 0}.

123

Higher-order reverse automatic differentiation 99

4 Numerical experiment

We have implemented the RevHedirAlgorithm 10 as an additional driver of ADOL-
C, a well established AD library coded in C and C++ [27]. We used version ADOL-C-
2.4.0, the most recent available.2 The tests were carried out on a personal laptop with
1.70GHz dual core processors Intel Core i5-3317U, 4GB of RAM, with the Ubuntu
13.0 operating system.

For those interested in replicating our implementation, we used a sparse undirected
weighted graph data structure to represent the matrices W and Td. The data structure
is an array of weighted neighbourhood sets, one for each node, where each neigh-
bourhood set is a dynamic array that resizes when needed. Each neighbourhood set is
maintained in order and the method used to insert or increment the weight of an edge
is built around a binary search.

We have hand-picked fourteen problems from the CUTE collection [28], augm-
lagn from [29], toiqmerg (Toint Quadratic Merging problem) and chainros_trigexp
(Chained Rosenbrook function with Trigonometric and exponential constraints) from
[30] for the experiments. We have also created a function

heavy_band(x, band) =
n−band∑

i=1

sin

⎛

⎝
band∑

j=1

xi+ j

⎞

⎠ .

For our experiments, we tested heavy_band(x, 20). The problems were selected
based on the sparsity pattern of D3 f (x) · d, dimension scalability and sparsity. Our
goal was to cover a variety of patterns, to easily change the dimension of the function
and work with sparse matrices.

In Table 1, the “Pattern” column indicates the type of sparsity pattern: bandwidth3

of value x (B x), arrow, frame, number of diagonals (D x), or irregular pattern. The
“nnz/n” column gives the number of nonzeros in D3 f (x) · d over the dimension n,
which serves as a measure of density. For each problem, we applied RevHedir and
edge_pushing Algorithm 10 and 9 to the objective function f : Rn → R, with
xi = i and di = 1, for i = 1, . . . , n, and give the runtime of eachmethod for dimension
n = 106 in Table 1. Note that all of these matrices are very sparse, partly due to the
“thinning out” caused by the high order differentiation. This probably contributed to
the relatively low runtime, for in these tests, the run-times have a 0.75 correlation with
the density measure “nnz/n”. This leads us to believe that the actual pattern is not a
decisive factor in runtime.

We did not benchmark our results against an alternative algorithm for we could
not find a known AD package that is capable of efficiently calculating such direc-
tional derivatives for such high dimensions. For small dimensions, we used the
tensor_eval of ADOL-C to calculate the entire tensor using univariate forward
Taylor series propagation [23]. Then we contract the resulting tensor with the vector

2 As checked May 28th, 2013.
3 The bandwidth of matrix M = (mi j) is the maximum value of 2|i − j | + 1 such that mi j �= 0.

123

100 R. M. Gower, A. L. Gower

Table 1 Description of problem set together with the execution time in seconds of edge_push and
RevHedir for n = 106

Name Pattern nnz/n edge_pushing RevHedir

cosine B 3 3.0000 2.89 5.25

bc4 B 3 3.0000 3.93 7.87

cragglevy B 3 2.9981 5.41 10.6

chainwood B 3 1.4999 4.04 7.22

morebv B 3 3.0000 4.57 9.44

scon1dls B 3 0.7002 3.99 8.12

bdexp B 5 0.0004 2.21 3.86

pspdoc B 5 4.9999 3.05 5.97

augmlagn 5 × 5 diagonal blocks 4.9998 4.15 9.28

brybnd B 11 12.9996 14.19 38.79

chainros_trigexp B 3 + D 6 4.4999 6.51 12.87

toiqmerg B 7 6.9998 4.33 8.89

arwhead arrow 3.0000 3.63 6.78

nondquar arrow + B 3 4.9999 2.9 5.61

sinquad frame + diagonal 4.9999 5.12 10.01

bdqrtic arrow + B 7 8.9998 8.98 19.62

noncvxu2 irregular 6.9998 4.95 9.55

heavy_band B 39 38.9995 20.74 61.27

d. This was useful to check that our implementation was correct,4 though it would
struggle with dimensions over n = 100, thus not an appropriate comparison.

Remarkably the time spent by RevHedir to calculate D3 f (x) · d was on aver-
age 108% that of calculating D2 f (x) in the above tests. This means the user could
gain third order information for approximately the same cost of calculating the
Hessian. The code for these tests can be downloaded as part of a package called
HighOrderReverse from the Edinburgh Research Group in Optimization web-
site: http://www.maths.ed.ac.uk/ERGO/.

5 Conclusion

Our contribution boils down to a framework for designing high order reverse methods,
and an efficient implementation of the directional derivative of the Hessian called
RevHedir. The framework paves the way to obtaining a reverse method for all
orders once and for all. Such an achievement could cause a paradigm shift in numerical
method design, wherein, instead of increasing the number of steps or the mesh size,
increasing the order of local approximations becomes conceivable. We have also shed

4 On the function scon1dls, bothmethods generate different fill-ins that are five orders of magnitude smaller
than the remaining entries.

123

http://www.maths.ed.ac.uk/ERGO/

Higher-order reverse automatic differentiation 101

light on existing AD methods, providing a concise proof of the edge_pushing [4]
and the reverse gradient directional derivative [31] algorithms.

The novel algorithms 4 and 5 for calculating the third-order derivative and its con-
traction with a vector, respectively, fulfils what we set out to achieve: they accumulate
the desired derivative “as a whole”, thus taking advantage of overlapping calculations
amongst individual components. This is in contrast with what is currently being used,
e.g., univariate Taylor expansions [23] and repeated tangent/adjoint operations [24].
These algorithms can also make use of the symmetry, as illustrated in our implemen-
tation of RevHedir Algorithm 10, wherein all operations are only carried out on a
lower triangular matrix.

We implemented and tested the RevHedir with two noteworthy results. The first
is its capacity to calculate sparse derivatives of functions with up to a million vari-
ables. The second is how the time spent by RevHedir to calculate the directional
derivative D3 f (x) · d was very similar to that spent by edge_pushing to calculate
the Hessian. We believe this is true in general and plan on confirming this in future
work through complexity analysis. Should this be confirmed, it would have an imme-
diate consequence in the context of nonlinear optimization, in that the third-order
Halley–Chebyshev methods could be used to solve large dimensional problems with
an iteration cost proportional to that of Newton step. In more detail, at each step the
Halley–Chebyshev methods require the Hessian matrix and its directional derivative.
The descent direction is then calculated by solving the Newton system, and an addi-
tional system with the same sparsity pattern as the Newton system. If it is confirmed
that solving these systems costs the same, in terms of complexity, then the cost of a
Halley–Chebyshev iteration will be proportional to that of a Newton step. Though this
comparison only holds if one uses these AD procedures to calculate the derivatives in
both methods.

The CUTE functions used to test both edge_pushing and RevHedir are rather
limited, and further tests on real-world problems should be carried out. Also, com-
plexity bounds need to be developed for both algorithms.

A current limitation of reverse AD procedures, such as the ones we have presented,
is their issue with memory usage. All floating point values of the intermediate vari-
ables must be recorded on a forward sweep and kept for use in the reverse sweep. This
can be a very substantial amount of memory, and can be prohibitive for large-scale
functions [32]. As an example, when we used dimensions of n = 107, most of our
above test cases exhausted the available memory on the personal laptop used. A pos-
sible solution is to allow a trade off between run-time and memory usage by reversing
only parts of the procedure at a time. This method is called checkpointing [32,33].

References

1. Griewank, A., Walther, A.: Evaluating derivatives, 2nd edn. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia (2008)

2. Gebremedhin, A.H.,Manne, F., Pothen, A.:What color is your Jacobian?Graph coloring for computing
derivatives. SIAM Rev. 47(4), 629–705 (2005)

3. Griewank, A., Naumann, U.: Accumulating Jacobians as chained sparse matrix products. Math. Progr.
95(3), 555–571 (2003)

123

102 R. M. Gower, A. L. Gower

4. Gower, R.M., Mello, M.P.: A new framework for the computation of Hessians. Optim. Methods Softw.
27(2), 251–273 (2012)

5. Gebremedhin, A.H., Tarafdar, A., Pothen, A., Walther, A.: Efficient computation of sparse Hessians
using coloring and automatic differentiation. INFORMS J. Comput. 21(2), 209–223 (2009)

6. Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev–Halley type methods in Banach spaces.
Bull. Aust. Math. Soc. 55(01), 113–130 (1997)

7. Amat, S., Busquier, S.: Third-order iterative methods under Kantorovich conditions. J. Math. Anal.
Appl. 336(1), 243–261 (2007)

8. Wang, X., Kou, J.: Semilocal convergence and R-order for modified Chebyshev–Halley methods. J.
Numer. Algorithms 64(1),105–126 (2013)

9. Ezquerro, J.A., Hern, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer.
Anal. Comput. Math. 77(1), 70–77 (2005)

10. Xu, X., Ling, Y.: Semilocal convergence for Halley’s method under weak Lipschitz condition. Appl.
Math. Comput. 215(8), 3057–3067 (2009)

11. Susanto,H., Karjanto,N.: Newtonsmethods basins of attraction revisited.Appl.Math. Comput. 215(3),
1084–1090 (2009)

12. Yau, L., Ben-Israel, A.: The Newton and Halley methods for complex roots. Am. Math. Mon. 105(9),
806–818 (1998)

13. Gundersen, G., Steihaug, T.: Sparsity in higher order methods for unconstrained optimization. Optim.
Methods Softw. 27(2), 275–294 (2012)

14. Gundersen, G., Steihaug, T.: On diagonally structured problems in unconstrained optimization using
an inexact super Halley method. J. Comput. Appl. Math. 236(15), 3685–3695 (2012)

15. Gundersen, G., Steihaug, T.: On large-scale unconstrained optimization problems and higher order
methods. Optim. Methods Softw. 25(3), 337–358 (2010)

16. Papadimitriou, D.I., Giannakoglou, K.C.: Robust design in aerodynamics using third-order sensitivity
analysis based on discrete adjoint. Application to quasi-1D flows. Int. J. Numer. Methods Fluids 69,
691–709 (2012)

17. Papdimitriou, D.I., Giannakoglou, K.C.: Third-order sensitivity analysis for robust aerodynamic design
using continuous adjoint. Int. J. Numer. Methods Fluids 71, 652–670 (2013)

18. Ozaki, I., Kimura, F., Berz, M.: Higher-order sensitivity analysis of finite element method by automatic
differentiation. Comput. Mech. 16(4), 223–234 (1995)

19. Ederington, L.H., Guan, W.: Higher order greeks. J. Deriv. 14(3), 7–34 (2007)
20. Kariwala, V.: Automatic differentiation-based quadrature method of moments for solving population

balance equations. AIChE J. 58(3), 842–854 (2012)
21. Corliss, G.F.F., Griewank, A., Henneberger, P.: High-order stiff ODE solvers via automatic differ-

entiation and rational prediction. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds.) Lecture notes in
computer science, pp. 114–125. Springer, Berlin, Heidelberg (1997)

22. Guckenheimer, J., Meloon, B.: Computing periodic orbits and their bifurcations with automatic dif-
ferentiation. SIAM J. Sci. Comput. 22(3), 951–985 (2000)

23. Griewank, A., Walther, A., Utke, J.: Evaluating higher derivative tensors by forward propagation of
univariate Taylor series. Math. Comput. 69(231), 1117–1130 (2000)

24. Naumann, U.: The art of differentiating computer programs: An introduction to algorithmic differen-
tiation. Number 24 in Software, Environments, and Tools. SIAM, Philadelphia (2012)

25. Neidinger, R.D.: An efficient method for the numerical evaluation of partial derivatives of arbitrary
order. ACM Trans. Math. Softw. 18(2), 159–173 (1992)

26. Fraenkel, L.E.: Formulae for high derivatives of composite functions. Math. Proc. Camb. Philos. Soc.
83(02), 159 (1978)

27. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the automatic differentiation of algorithms
written in C/C++. ACM Trans. Math. Softw. 22(2), 131–167 (1996)

28. Bongartz, I., Conn, A.R., Gould, N., Toint, P.L.: CUTE: constrained and unconstrained testing envi-
ronment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

29. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J. Optim. Theory Appl.
30(1), 127–129 (1980)

30. Luksan, L., Vlcek, J.: Test problems for unconstrained optimization. Technical Report 897, Academy
of Sciences of the Czech Republic (2003)

123

Higher-order reverse automatic differentiation 103

31. Abate, J., Bischof, C., Roh, L., Carle, A.: Algorithms and design for a second-order automatic differ-
entiation module. In: Proceedings of the 1997 International Symposium on Symbolic and Agebraic
Computation (ACM), pp. 149–155, New York (1997)

32. Walther, A., Griewank, A.: Advantages of binomial checkpointing for memory-reduced adjoint cal-
culations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and
Advanced Applications, pp. 834–843. Springer, Berlin, Heidelberg (2004). ISBN: 978-3-642-62288-5.
doi:10.1007/978-3-642-18775-9_82

33. Sternberg, J., Griewank, A.: Reduction of storage requirement by checkpointing for time-dependent
optimal control problems in ODEs. In: Norris, B., Bücker, M., Corliss, G., Hovland, P., Naumann, U.
(eds.) Automatic Differentiation: Applications, Theory, and Implementations, 0, pp. 99–110. Springer,
1 edition (2006)

123

http://dx.doi.org/10.1007/978-3-642-18775-9_82

	Higher-order reverse automatic differentiation with emphasis on the third-order
	Abstract
	1 Introduction
	2 Derivatives of sequences of maps
	2.1 First-order derivatives
	2.2 Second-order derivatives
	2.3 Third-order methods

	3 Implementing through state transformations
	3.1 First-order derivatives
	3.2 Second-order derivatives
	3.3 Third-order derivatives
	3.3.1 Implementing third-order directional derivative

	4 Numerical experiment
	5 Conclusion
	References

