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1 Introduction

Waterjet etching is the process of using a waterjet for etching or engraving
shapes and trenches from a material. The system is shown in Figure 1 where
a high-pressure water inlet is attached to a jewel confining the water stream
and increasing the speed. Garnet is introduced in order to improve the
abrasive effect of the liquid whose composition gets close to be homogeneous
via a mixing tube. A guard surrounds the mixing tube and the final waterjet
liquid is impinging on the material.

Figure 1: A diagram of a water jet cutter. (1): high-pressure water inlet.
(2): jewel (ruby or diamond). (3): abrasive (garnet). (4): mixing tube. (5):
guard. (6): cutting water jet. (7): cut material (source: waterjets.org)

The area of waterjet etching is mathematically relatively unexplored.
Abdel - Rahman [1] presented a closed-form expression for an abrasive wa-
terjet cutting model for ceramic materials while Kolahan et. al. [2] esti-
mated and optimized the parameters of a linear model using a regression
analysis. Lei et. al., [3] employed artificial neural networks for modeling
abrasive water jet cutting for stainless steel while Yang et. al., [4] resorted
to estimate parameters for optimizing the quality of an abrasive waterjet
cutter. Popan et. al., [5] presented a study of the WJC etching process
of steel and stainless steel material, however the mathematical models are
mainly based on the estimation of a larger number of parameters that leaves
a large number of degrees of freedom. Friedrich et. al., [6] resorted to the
Kuramoto-Sivashinsky equation for modeling the ripple formation of the wa-
terjet process. The work that was done by the mentor John Billingham is
provided in the papers [7] and [8].

The major shortcomings of the models presented above is that they are
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mainly based on statistical models that do not take into account the physi-
cal structure of the problem ( ANOVA statistical model in Kolahan et. al.,
Neural Network modeling in Yang et. al.) or that they model waterjet cut-
ting but not the etching process which requires a stronger coupling between
the velocity and etching rate (WJC cutting model for ceramic materials by
Abdel-Rahman, Artificial Neural Network model for WJC of steel by Lei et.
al.). A further shortcoming is that even if the model physically represents
the underlying structure, the obtained equation is complicated and difficult
to solver numerically due to the inherent instabilities as in Friedrich et. al.,
where the Kuramoto-Sivashinsky equation given by

yt = V (x)(f(y) + α4 y + β42)− uyx (1)

is used to model the problem. For a more detailed discussion and analysis of
the Kuramoto-Sivashinsky equation, the reader may refer to the following
publications by Hyman et. al. [9], and Boghosian et. al. [10].

2 Mathematical Modelling

2.1 Continuum approach

We assume that most of the etching is done by the impact of the garnet
with the material, i.e. a high pressure jet of just water would not cut stone.
Because of the large number of pieces of garnet which impact on the surface
per second millimetre squared, we wish to formulate this as a continuum
problem. We will argue this based on the typical dimensions of the jet we
wish to model and the accuracy we wish to obtain. Note that the jet has a
circular nozzel and let

R =jet diameter,

S = top speed that the jet machinery can move “parallel” to the surface.

0.2R =garnet diameter,

V S = average velocity of the water leaving the jet,

where V is a large non-dimensional quantity. Assuming that on average the
garnet particles leave the jet in a straight line, then for every point X on the
surface we are etching (removing material), let θ be the angle between the
trajectory of the garnet particle that hits X with the normal of the surface
at the point X, see Figure (2). We will, for the time being, consider that the
average angle of impact is around 45◦, whilst noting that for extreme angles
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the following my not hold true. Then the average surface area covered by the
jet per unit time is As = 2RS/ cos θ = 2

√
2RS. Now we’ll approximate the

number of garnet particles that leave the jet per unit time, Gs, as the volume
of water that leaves the jet per unit time multiplied by the percentage of
material assumed to be made of garnet, 20%, divided by the volume of a
garnet stone.

Gs =
0.2V S(R)2π

4(0.2R)3π/3
≈ 19V S

R
,

thus the average number of garnet stones that hit the surface, averaged over
time, per area is given by

Gs/As ≈ 7
V

R2
.

The best precision we could hope for is about a tenth of the jets area, thus
measuring area in this units we get that R2π = 4, or

Gs/As ≈
7

10
πV,

where typically V is greater than 6000, thus a model that describes the
influence of each individual stone, in a statistical or deterministic manner,
is beyond our level of control and hence we prefer a continuum model.

2.2 The Model

We shall start with a simple example of the general model as to better our
understanding. Suppose that the rate at which the height of a point z(x, y)
on the surface is etched is constant if the point is under the jet and zero if
it is not under the jet, then assuming the jet is pointing along the z-axis In
the simplest case the model is described by the equations:

∂z

∂t
= −H(‖X− X̄(t)‖/R)P, t ∈ [0, T ], (2)

z(X, 0) = g(X),

where P is a constant representing the jet’s etching power, H(y) = 1 if
0 ≤ y ≤ 1 and 0 otherwise. The simplest case to test is X̄(t) = (vt, 0). To
do so we introduce the notation f(X) = z(X, 0) − z(X, T ), let X = (x, y)
then assuming that X̄(t) starts much before (x, y) and passes completely
over (x, y) we can integrate both sides of equation (2) in t and obtain:

f(x, y) = −P

√
R2−y2/v+x/v∫

−
√

R2−y2/v+x/v

dt = −2P

v

√
R2 − y2. (3)
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Hence the transverse profile of the trench z(x, ·, T ) describes an ellipse who’s
eccentricity is determined by 2P/v. Becuase the jet etching rate is uniform
in its area of effect, we have that

f(X) = −Pτ(X), (4)

where τ(X) is the exposure time of the point X under the jet, which is
illustrated by equation (3).

There are two major effects that we have not taken into account in the
above model. First, that garnet particles travelling closer to the jets central
axis may travel faster than garnet particles travelling closer to the border
of the jets tube. Therefore instead of using a step function we may want
to use M(‖X − X̄(t)‖) with M > 0, which would allow for this behaviour.
Second, if a garnet particle’s velocity is orthogonal to the surface it hits, it
will transfer more energy and thus etch away more material than a particle
who’s velocity is at an angle θ to the surface’s normal vector. See Figure (2)
below.

The general model we will present is phenomenological and below are
some of the major the underling assumptions, it may be helpful to refer to
the equations of the general model (6) whilst reading these assumptions.
Though we first need,

Definition 1 For each point on the surface, parametrized by X, and time
t, we call the point’s ray: the shortest line from the jet’s nozzel to the point
on the surface.

In a sense a ray is the continuum aproach which captures the average effect
that the garnet stones have on a point on the surface. Now we present the
model’s major assumptions:

• The impact of the jet on the specimen results in the removal of mate-
rial, and consequently changing its shape, only on the region of impact.

• The ray’s length does not alter the rate at which material is removed.

• The rate at which material is removed by the jet depends on the angle
θ between the surface normal and the point’s ray.

According to the preceding we state the general pde as,

∂z

∂t
=−M(‖X− X̄(t)‖)A(‖∇z‖), (5)

z(X, 0) =g(X)

(6)
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Figure 2: Example of one ray of the jet’s ray’s effect on the surface, where
θ is the angle between the ray’s direction and the surface normal.

where X̄(t) ∈ R2 is the parametrisation of the centre of the jet’s effect on
the surface, both X̄(t) and g(X) are given, M depends on the material and
jet properties which hopefully will be determined by means of experimental
data, and A(‖∇z‖) capture’s the dependence on θ noting that

cos θ =
1

(‖∇z‖2 + 1)1/2
.

Now to in fact determine M and A we must see in what form the ex-
perimental data is available. A most useful form of data would be to have
the evolution of the surface in time while the jet stands still for several
inclined planes. This could be done with some sort of laser inversion tech-
nology. Though for this project we were only presented with data for straight
trenches, for which we would first have to solve the problem of inverting the
trenches transversal profile to obtain M . To do so, assume the trench is
sufficiently small so that we may take A(‖∇z‖) to be approximately con-
stant, or alternatively we could consider a function E that will capture in
some respect the average A(‖∇z‖) contribution to the decrease in z for ap-
proximately straight trenches, we shall come back to this argument after the
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following: let X̄(t) = (vt, 0) then

∂z

∂t
= E(‖(x− vt, y)‖), (7)

for some undetermined function E, then

f(x, y) =

√
R2−y2/v+x/v∫

−
√

R2−y2/v+x/v

E(‖X− (vt, 0)‖)dt =

R∫
y

E(r)
2r√
r2 − y2

dt, (8)

where we used the coordinate change for r =
√

(vt− x)2 + y2.
Note that along a straight trench the point X further away from the

jet’s axis, i.e. for a larger r in E(r), would most likely be more inclined in
relation to the jet’s axis (z axis) and thus on average be etched away less
then points where the jet’s axis passed directly on top. Hence if E(r) is not
uniform, which experimental data will discern in posterior sections, this can
either be explained by the function M in equation 6 being non-uniform, or
by some average contribution of A.

3 Calibrating the general model

Recall that we started with a simple model which assumed uniform etching
over the circular footprint of the jet. For straight jet paths this model
predicted ellipse shaped trench cross-sections. However an ellipse is not
observed in practice. This motivated us to consider the more general model
(6):

∂z

∂t
= −M(||X− X̄(t)||)A(||∇z||)

z(X, 0) = g(X).

This model says that the etching occurs at a rate that depends the distance
from the centre of the jet (through the function M) and on the angle of the
material being etched (through the function A). The goal of this section is
to find forms of M and A which reproduce the experimental data.

To aid us in this task we solved (6) numerically using a simple first order
forward Euler scheme. This allowed us to simulate the etching process, and
hence investigate the affect of the form of M and A on the trench shape.
We can see a snap shot of a simulation of the jet moving in a straight line
in Figure 3.

6



Figure 3: A simulation of the jet moving across the material.

3.1 Form of M

We initially ignore angle dependence by restricting our attention to shallow
trenches. Therefore we just take A to be the identity. With this simplifica-
tion we can actually derive an analytic expression for the radially symmetric
etching function M in terms of the profile of the trench z produced when
the jet moves in a straight line.

3.1.1 M in terms of z

We take a jet of circular aperture with radius R. The depth etched is
determined by the amount of time a point is under the jet. For a jet moving
at constant speed, this reduces to the width of the jet. Points closer to the
centre line of the jet y = 0 spend more time under the jet and hence more
etching occurs.

Let us consider a constant etching rate M(r) = P . The depth etched z
is a function of the distance from the centre line of the jet. For a circular
jet aperture, let us suppose that the jet moves at a constant speed v along
the line y = 0. The width of the jet above a point (·, y) is the amount of
exposure that point has to the jet. As such, it is easily deduced that

vz(y) = −2P
√
R2 − y2, (9)

for −R ≤ y ≤ R. Hence, the depth etched out by a constant etching rate is
elliptical.
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Let us consider a more general etching rate M(r). The depth z(y) of
the trench at a distance y from the centre line of the jet moving at constant
speed v can be written as

vz(y) = 2

∫ R

y

M(s) s

(s2 − y2)
1
2

ds, (10)

for 0 ≤ y ≤ R. The integral equation (10) can be solved in a similar way to
the classical Abel Equation [11], with solution

M(r) =
1

r

4

π

d

dr

∫ R

r

vz(s) s

(s2 − r2)
1
2

ds, (11)

=
4v

π

z(r)

(R2 − r2)
1
2

− 4v

π

∫ R

r

z(s)− z(r)
(s2 − r2)

1
2

s ds, (12)

for 0 ≤ r ≤ R, where we assume that M(R) = 0. Hence, given data for z(y)
we can compute the etching rate M(r).

3.1.2 M from experimental data

Now we can take the experimental data for shallow trenches and, after some
preprocessing to make it symmetric, plug it into (12) to get M . The result
of this can be seen in Figure 4.

Observe that the function in 4 approximately corresponds to a uniform
etching in a central region and zero etching elsewhere. Therefore it is rea-
sonable to take

M(||X− X̄(t)||) := H(||X− X̄(t)||/R), (13)

where H is a heaviside function defined by

H(r) :=

{
1 if r ≤ 1

0 if r > 1
,

and R is the radius of the active part of jet.
The simple form of (13) will make solving the inverse problem of section

4 easier. However, if we are just doing numerical simulations then we want
M to be as accurate as possible, and the complexity of the function is not so
much of a concern. Therefore instead of H we use a smooth approximation
Hs to the heaviside function defined by

Hs(r) :=
1

1 + e2k(x−1)

for some parameter k. A value of k = 15 produces a function which closely
matches the experimental data in Figure 4.
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Figure 4: The function M corresponding to the experimental data for shal-
low trenches. Each line represents a cross-section at a different angle (in
degrees) of a shallow pit made by the jet.

3.2 Form of A

Taking A to be the identity does not lead to a good approximation for
deeper trenches. This is because of angle dependent effects, which we have
confirmed from data showing that trenches are shallower when the jet hits
the material at an angle. Unfortunately it is harder to find A in terms
of z than it is to find M in terms of z. Therefore we resort to trying
some physically reasonable forms of A and seeing how well the trenches the
produced match the data we have.

In Figure 5 we can see some examples. The functions referred to in the
legend are defined as follows:

• ‘identity’ - A(||∇z||) := 1

• ‘normal velocity’ - A(||∇z||) := vn, were the normal velocity vn :=
v

(||∇z||2+1)1/2

• ‘cut-off’ - A(||∇z||) :=

{
1 if vn ≥ C
0 if vn < C,

, where C is a constant

• ‘angle’ - A(||∇z||) is proportional to the angle of the material
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(a) Experimentally observed trench. (b) Trenches generated by simulation.

Figure 5: Comparison of experimental data on deep trenches to simulated
trenches for different forms of A.

We see that the ‘cut-off’ function produces a trench shape with fairly
straight sides like in the experimental data. Therefore this may be a rea-
sonable model for A. This is perhaps the best we can do with the limited
amount of data we have available. In a collaboration with industry we could
better determine A by running some experiments to get some data on the
etching rate at lots of different angles, then interpolate this data to approx-
imate A.

4 The Inverse Problem

Recently, industry has been most interested in how to etch a specific sur-
face with these high pressured jets. This from our view point is an inverse
problem, being that we have modelling the effect of the jet given a the jet’s
path and inclination. Solving such an inverse problem can be badly posed
and overwhelming, so choosing which

parameters to take into consideration is crucial. In general, these might
include: position of the jet’s nozzle, angle of incidence, distance between the
nozzle and the sample, jet properties such as its cross-section, properties
of the material and many other. We have choosen to restrict ourselves to
a simple and most influencial set of parameters, which are included in our
model (6), to help achieve the inverse problem. Which can be formally

10



stated as

∂z

∂t
= −M(‖X− X̄(t)‖)A(‖∇z‖), (14)

z(X, 0) = g(X) and z(X, T ) = f(X) + g(X),

where now f(X) and g(X) are given and the parametrization of the position
of the centre of the jet’s effect on the surface X̄(t) is an unknown. We will
consider both the 1D case as well as the full-dimensional case (X̄(t) ∈ R2).
Anticipating things, we claim that in both cases there is neither an exact
nor unique solution for an arbitrary f(X).

4.1 Inverse problem in 1D

We shall first attempt to solve the 1D inverse problem for a uniform etching
rate given by

∂z

∂t
= −H((x− x̄(t))/R),

where to simplify we take z(x, 0) = 0, thus

f(x) = −
∫

‖x−x̄(t)‖≤R

dt = −
x+R∫

x−R

dx̄

v(x̄)
, (15)

this last step is achieved by means of a x̄(t) pushforward, in other words,
dx̄ = ∂tx̄dt = v̄dt, and the limits of integration are determined by ‖x −
x̄(t)‖ = R. Now differentiating both sides of the above equation in x gives
us

f ′(x) =
1

v(x−R)
− 1

v(x+R)
. (16)

Note1 that we wish to obtain v. Let us look first at the homogeneous part
of the equation: vh(x − R) + vh(x + R) = 0, then if vh(x) is a solution
then so is vh(x) + p(x, 2R) where p(x, 2R) = p(x + 2R, 2R) for every x in
the domain. This non-uniqueness of v can be rooted in the physics of the
event by noting that if the jet speeds up and slows down periodically then
the height of the surface will be etched on average as much as a jet moving
at some intermediate speed, thus for these two cases the surface would be
etched the same amount. To solve this we may enforce boundary conditions
such as prescribing the limits lim

x→±∞
v.

1At this point the reader may wish to try out a simple example: x̄(t) = t2/2, ∂tx̄ = t
thus v(x̄) =

√
2x̄ and substitute to see that the result make sense.
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We may now work towards the inversion by substituting the Fourier
transform of all functions in equation (16), then equating the integrands
and renaming ν(x̄) = 1/v(x̄), resulting in,

ν̂(k) =
ikf̂(k)

eikR − e−ikR
, (17)

where

ĝ(k) =
1√
2π

∞∫
−∞

g(x)e−ikxdx,

and we have thus assumed that for x → ±∞ both f(x) and ν(x) tend
to zero, this also implies that the homogeneous solution to νh(k)(e−ikR −
eikR) = 0 is possibly non-zero only on a zero-measure set, thus νh(x) =
0. Now the singularities in ν̂(k) occur at the points kR = mπ for m ∈
N, these singularity in the frequency domain correspond to adding a 2R-
periodic function in the spatial domain, which is now not allowed by the
boundary condition. To uphold the assumptions, when solving for ν(x) we
must discard any 2R-periodic function that might be added.

Now there is still the problem that once f is chosen and f̂ found, then
convergence of the inverse Fourier transform of v̂ is by no means guaranteed,
even for a very smooth function f . We present an example which conver-
gence is certain, i.e. a spline defined on the interval (x0 − R, x0 + R), so
that

f(x) = H(R+ x− x0)H(R− x+ x0)
(
ax3 + bx2 + cx+ d

)
where,

H =

{
1 if x ≤ 0,
0 if otherwise.

Using equation (17) this results in

ν̂(k) = −e
ikR−ik(R+x0)

√
2π

(
x0

(
3aR2 + ax2

0 + c
)

+ b
(
R2 + x2

0

)
+ d
)

+
ie−ikx0

√
2πk3

(
3a
(
−2 + k

(
k
(
R2 + x2

0

)
− 2ix0

))
+ k(2bkx0 − 2ib+ ck)

)
− iRe−ikx0

√
2πk2

cot(kR)
(
a
(
−6 + k

(
kR2 + 3kx2

0 − 6ix0

))
+ k(2bkx0 − 2ib+ ck)

)
.
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Now we remove the singularities in ν̂ that would lead to functions with a
2R period, then taking the inverse Fourier Transform we get

ν(x) =− δ (x− x0)
(
x0

(
3aR2 + ax2

0 + c
)

+ b
(
R2 + x2

0

)
+ d
)

− 1

2
sgn (x− x0)

(
3a
(
R2 + x2

)
+ 2bx+ c

)
+ 3aRx, (18)

the last term 3aRx was added so that equation (16) is satisfied, in other
words we must have thrown something away inappropriately in ν̂. Now to
illustrate this final result we plot both sides of equation (16) in Figure (6).

-0.5 0.5 1.0 1.5 2.0 2.5 3.0
x

-1.5

-1.0

-0.5

0.5

1.0

1.5

y

Figure 6: Where the blue line is f ′(x) and the red line is ν(x−R)−ν(x+R).

This figure illustrates that the functions agree on the interval (x0 −
R, x0 +R), where R = 0.5 and x0 = 1, it is also clear the difficulty of joining
these splines together. For future considerations, after some experimentation
with this analytic inverse, we have seen that ν̂ converges when an inversion
is possible, as expected. One possibility is that when designing f we add
a transition phase to the ends of the function f , just the same as where
ν(x − R) − ν(x + R)differs from f ′(x). We could in fact use this previous
solution to ν(x − R) − ν(x + R) to add the appropriate transition phase.
This phase brings about a multiplication of sin(kR) in f̂ which could possibly
guarantee the convergence of ν.

4.2 Inverse problem in 2D

The inverse problem in 2D does not have a solution in general, e.g. the non-
existence of a solution is evident for f(X), such that suppf(X) is less than
2R in diameter. Since we deal with optimization, we use the notation f̃(X)
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for the desired etching (i.e. from the inverse problem conditions) and f(X)
for the actual etching (i.e. current solution candidate provides). Here we
provide some heuristic insights into the full-dimensional case of the inverse
problem.

Equation (4) states that f(X) and the exposure time τ(X) are propor-
tional, hence we look for a way to control the exposure time. Our approach
consists in choosing the path of jet motion, computing the jet motion speed
which accounts for the exposure time at each point of the path Ξ, and ob-
taining the parametrization X̄(t) from these. Assuming the nozzle speed v
is constant throughout the whole route we have

f(X) = −Pτ(X) =
P

v
W (X,Ξ), (19)

i.e. the exposure time (and hence the amount of material) decomposes into
the product of a path-independent term and the path function W (X,Ξ) (e.g.
equation (3) means that W (x, y,Ξ) = −2

√
R2 − y2 for the straight line).

One can choose v such that the desired etching f̃(X) is achieved at a point
X0 (f̃(X0) = f(X0)), or such that the actual etching matches the desired
on average (

∫
f̃(X0)dX =

∫
f(X0)dX):

vexact =
PW (X0,Ξ)

f(X0)
, vavg =

P
∫
W (X,Ξ)dX∫
f̃(X)dX

(20)

The relationship (19) can be extended for varying v: we split the entire
domain into two regions corresponding to different constant values of v and
parts of the path Ξ1, Ξ2 and a transitional region (naturally, a curve of
width 2R), which is to keep v continuous and separate the supports of
W (X,Ξ1), W (X,Ξ2). For both sub-regions a suitable vavg can be chosen
and due to continuity considerations, f(X) in transitional region is between
the values of f̃(X) in the sub-regions on average. Thus, disregarding 2R-
wide transitional regions the segmentation can be extended to the limit and
still give an approximation

v(X) ≈ PW (X,Ξ)

f(X)
≈ PW (X,Ξ)

f̃(X)
. (21)

To demonstrate this approach we first attempt to solve an inverse prob-
lem for f(X) = const, that is, the task is to etch away a layer of material of
constant depth. We use several equidistant parallel lines of length L as the
path in order to scan the entire surface at the speed v, which is computed
from (21).
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a. b.

Figure 7: Numerical simulation of etching away a layer of material by several
equidistant strokes: a. n = 3, stripes do not overlap; b. n = 5, stripes
overlap.

Figure 7.a illustrates that the uniform etching together with circular jet
cross-section results in an elliptic trench profile, and strokes with spacing
2R, thereafter, result into equidistant furrows. The discrepancy between the
desired and the actual surface measured in the uniform metric ‖f(x, y) −
f̃(x, y)‖∞ can be reduced by changing the nozzle route Ξ and, consequently,
W (X,Ξ).

In particular, ‘stripes overlapping‘ strategy can be used: we increase the
number of strokes n and decrease the distance between them, that improves
the overall result as shown on Figure 7.b. In theory, the exact desired shape
cannot be achieved using the ‘stripes overlapping‘ strategy, since ellipses
never add up to a rectangle. There is also a practical limitation of this
strategy. Notice, that for uniform etching

∫
f(X)dX = −PL

v πR
2n holds,

therefore in order to keep this quantity constant one has to increase the
number of stripes n in proportion to the nozzle velocity v, which is obviously
bounded for technological reasons. Thus, the number of stripes is bounded
as well.

In order to further illustrate the reverse problem in 2D, we are now look-
ing for an approximate solution for axisymmetric shapes f(X) = f(r), where
polar coordinates are introduced as follows: X = (x, y) = (r cosφ, r sinφ).
We set the Archimedean spiral φ(r) = 2πr/ε as the path, where ε is the con-
stant distance between successive turns measured along a radial ray. The
speed v(r) is varied to obtain the desired shape. Considering the spiral as
the set of concentric circles and neglecting the curvature of the circles (that
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makes a rather good approximation for large r) allows to write:

v(r) ≈ r
dφ

dt
=

2πr

ε

dr

dt
,

f(r) ≈ −PπR
2

εv(r)
≈ − PR3

2εr drdt
,

which leads to the ODE:

dr

dt
= −PR

2

2ε

1

rf(r)
, (22)

By solving the equation (22) with the initial condition r(0) = 0 (i.e. the
spiral starts at the origin) one obtains the nozzle motion parametrization
X̄(t) = (x̄(t), ȳ(t)), which gives the approximate solution of the inverse
problem:

r(t) −the solution of (22),

x̄(t) = r(t) cos
2πr(t)

ε
,

ȳ(t) = r(t) sin
2πr(t)

ε
.

Notice, that if f(x) is linear or piece-wise linear (i.e. defines a right circular
cone or crown-like shape respectively), the equation (22) can be easily solved
analytically by separation of variables.

The numerical simulation of etching axisymmetric shapes using this ap-
proach is depicted on Figure 8.

5 Conclusion

Waterjet technology has been a well-established and clean technology for
performing high precision drills without facing the deteriorating effects of
heat generation faced by other conventional drilling techniques. Despite its
success in drilling, etching with waterjets has so far been hampered by the
large number of degrees of freedom in the parameter calibration as well as
that conventional models for waterjet cutting capture the etching process
non-satisfactorily. In the report we have presented a general parameter
dependent PDE model for simulating the waterjet etching process where the
solution could be explicitly obtained in the 1 D case and in the 2 D case via
an iterative inversion technique. Simulations show a perfect correspondence
between the experimental data and the numerical results making accurate
model predictions for waterjet etching a reality.
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t=0.1s t=2.1s

t=0.6s t=2.6s

t=1.1s t=3.1s

t=1.6s t=3.6s

Figure 8: Etching of an axisymmetric shape. Length is measured in mm. .
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