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Supplementary Note 1: The stress identity

Here we prove the following identity, used in the paper to connect wave speeds with stress:

𝜎11 − 𝜎33 = A0
1313 − A0

3131. (S-1)

In the paper we write these moduli as 𝛼 = A0
1313 and 𝛾 = A0

3131, and considered scenarios

where the components of the Cauchy stress 𝜎11 and 𝜎33 are the principal stresses 𝜎1 and 𝜎3,

respectively. Here A0
𝑝𝑖𝑞 𝑗
are the Cartesian components of the Eulerian elasticity tensor. For

incompressible solids, they are determined from the strain energy function𝑊 and the deformation

gradient tensor with components 𝐹𝑖𝐽 as (28,50)

A0
𝑝𝑖𝑞 𝑗 = (𝜎𝑝𝑞 + 𝑝𝛿𝑝𝑞)𝛿𝑖 𝑗 + 4𝐹𝑝𝑃𝐹𝑞𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹𝑖𝐼𝐹𝑗 𝐽 , (S-2)

where𝐶𝐼𝐽 = 𝐹𝑘 𝐼𝐹𝑘𝐽 , summation over repeated indices is implied, and 𝛿𝑖 𝑗 is the Kronecker delta.

Hence

A0
1313 = 𝜎11 + 𝑝 + 4𝐹1𝑃𝐹1𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹3𝐼𝐹3𝐽 , (S-3)

A0
3131 = 𝜎33 + 𝑝 + 4𝐹3𝑃𝐹3𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹1𝐼𝐹1𝐽 = 𝜎33 + 𝑝 + 4𝐹1𝑃𝐹1𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹3𝐼𝐹3𝐽 , (S-4)

where for the last equation we swapped the dummy variables 𝐼 ↔ 𝑃 and 𝑄 ↔ 𝐽, and then we

used the symmetries 𝐶𝐼𝑃 = 𝐶𝑃𝐼 . By subtraction we obtain the identity (S-1).

Often the stress is modeled as being caused by a finite elastic deformation from a stress-free

configuration. When instead, we consider small elastic waves in an initially stressed reference

where the initial stress, denoted by 𝜏𝑖 𝑗 is due to any origin, then in the above we would take

𝐹𝑝𝑃 = 𝛿𝑝𝑃 (28,29), and the identity would still hold.

For future reference, we recall that the Cauchy stress is computed as (50)

𝜎𝑖 𝑗 = 𝐹𝑖𝐾
𝜕𝑊

𝜕𝐹𝑗𝐾
− 𝑝𝛿𝑖 𝑗 , (S-5)

where 𝑝 is a Lagrange multiplier due to the constraint of incompressibility.
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Supplementary Note 2: Phase and group velocity

Here we relate the wave speeds to the moduli appearing in the stress identity (S-1).

We start with the equation of motion for plane shear waves of the form 𝒖 = 𝒖0𝑒
𝑖𝑘 (𝒏·𝒙−𝑣𝑡) ,

which is given by Equation (5.16) in Ref. (51):

(𝑰 − 𝒏𝒏T)𝑸(𝒏) (𝑰 − 𝒏𝒏T)𝒖0 = 𝜌𝑣2𝒖0, (S-6)

where 𝒙 = (𝑥1, 𝑥2, 𝑥3), 𝒏 = (𝑛1, 𝑛2, 𝑛3), 𝑄𝑖 𝑗 (𝒏) = A0
𝑝𝑖𝑞 𝑗

𝑛𝑝𝑛𝑞, and 𝒖0 is a unit vector along the

direction of polarization (orthogonal to 𝒏, the unit vector along the direction of propagation).

Then its wave speed 𝑣 is given by

𝜌𝑣2 = 𝒖T
0𝑸(𝒏)𝒖0. (S-7)

Let 𝑣𝑥 and 𝑣𝑧 be the speeds of the shear waves when 𝒏 = (1, 0, 0), 𝒖0 = (0, 0, 1), and

𝒏 = (0, 0, 1), 𝒖0 = (1, 0, 0), respectively. From the above it follows that

𝜌𝑣2
𝑥 = A0

1313, 𝜌𝑣2
𝑧 = A0

3131. (S-8)

To guarantee that there are two shear waves with speeds (S-8) that satisfy the equation of 

motion (S-6), we assume that all forms of anisotropy are coaxial with the deformation tensor 

𝑪 = 𝑭𝑭T. Different types of anisotropy, such as the ones captured by an initial stress tensor 

𝝉 (28–30) or a structural anisotropy tensor 𝑴𝑴T (where 𝑴 is a unit vector along the preferred 

direction in the reference configuration for t ransversely i sotropic m aterials, s ee for example 

Ref. (51)), can be included in the strain-energy 𝑊 , from which we can deduce the moduli A0
𝑝𝑖𝑞 𝑗 

with (S-2). For example, 𝝉 and 𝑴𝑴T are coaxial with 𝑪, and themselves, when

𝑪𝝉 = 𝝉𝑪, 𝑪𝑴𝑴T = 𝑴𝑴T𝑪, and 𝝉𝑴𝑴T = 𝑴𝑴T𝝉.

This condition implies, for example, that 𝑴 is aligned with the principal directions of the initial 

stress 𝝉 and the final stress 𝝈.
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In more detail,𝑊 can be written as a sum and multiplication of terms of the form tr (𝑨𝑪𝑛𝑩)

for integer 𝑛 where 𝑨 and 𝑩 are some multiplication of anisotropy tensors such as 𝝉 and 𝑴𝑴T.

When all these tensors are coaxial, and we choose a coordinate system aligned with their axes,

we find that

A0
𝑝𝑖𝑞 𝑗 = 0 unless


𝑝 = 𝑖 & 𝑞 = 𝑗 , or
𝑝 = 𝑞 & 𝑖 = 𝑗 , or
𝑝 = 𝑗 & 𝑞 = 𝑖.

(S-9)

By assuming the above, we can deduce which elastic shear waves can give us access to the stress

identity (S-1).

Let 𝒏 = (cos 𝜃, sin 𝜃, 0) and 𝒖0 = (− sin 𝜃, cos 𝜃, 0), which substituted into (S-7) leads to

𝜌𝑣2 = 𝛼 cos4 𝜃 + 2𝛽 cos2 𝜃 sin2 𝜃 + 𝛾 sin4 𝜃, (S-10)

where the moduli 𝛼, 𝛽, 𝛾 are defined as 𝛼 = A0
1313, 2𝛽 = A0

1111 + A0
3333 − 2A0

1133 − 2A0
3113,

𝛾 = A0
3131. Note this is the same result as deduced in (25, 50, 52) with the difference that here

we showed that it holds in general when (S-9) holds. This justifies how and when our method

applies to anisotropic solids under stress.

Now consider two shear waves, one with propagation direction 𝜃 = 𝜃0 and the other with

𝜃 = ±𝜋/2 ± 𝜃0 with the speeds 𝑣𝑥 and 𝑣𝑧, respectively. Then, according to Eq. (S-10) and (S-1),

we find that

𝜎1 − 𝜎3 = 𝜌
𝑣2
𝑥 − 𝑣2

𝑧

cos 2𝜃0
, (S-11)

a generalization of the result established in (25) for isotropic solids.

The group velocities 𝒗𝑔 are often easier to measure in shear wave elastography experiments, 

in comparison to the phase speed given by Eq. (S-10). The group velocity depends on the 

anisotropy of the material, and the initial forcing of the wave (34), what we call the Acoustic 

Radiation Force (ARF). For the ARF we programmed, as shown in Fig. 2 and Fig. S2, we were 

able to generate waves propagating along the 𝑥 and 𝑧 directions whose wavefronts are locally
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flat. In these cases, the phase velocity can be measured, so in conclusion we can use Eq. (S-10).

However, it is certainly easier to generate a point ARF. So we also discuss this case.

For an ARF focused on one point that equally excites bulk waves in all directions, the group

velocity is given by 𝒗𝑔 = 𝜕 (𝑘𝑣)/𝜕𝒌 (34), where 𝒌 = 𝑘𝒏 denotes the wave vector. For the phase

velocity 𝑣 given by Eq. (S-10) we obtain the group velocities:

𝑣𝑔1 =
𝛼 cos 𝜃 + (2𝛽 − 𝛼 − 𝛾) sin4 𝜃 cos 𝜃

𝜌𝑣
, (S-12)

and

𝑣𝑔3 =
𝛾 sin 𝜃 + (2𝛽 − 𝛼 − 𝛾) sin 𝜃 cos4 𝜃

𝜌𝑣
. (S-13)

Equations (S-12) and (S-13) show that the phase and group speed are identical in the principal

directions 𝜃 = 0 and 𝜋/2, because there, 𝜌𝑣2 = 𝛼, 𝛾, respectively. The coincidence of the two

speeds along and at the right angle to the axis of symmetry always holds, see (53, p.16) for

example. For isotropic materials subject to moderate stress we have the further simplification

2𝛽 ≈ 𝛼 + 𝛾 (52), which results in

𝜌𝑣2 = 𝛼 cos2 𝜃 + 𝛾 sin2 𝜃, 𝑣𝑔1 =
𝛼 cos 𝜃
𝜌𝑣

, 𝑣𝑔3 =
𝛾 sin 𝜃
𝜌𝑣

, (S-14)

and thus
𝑣2
𝑔1

𝛼/𝜌 +
𝑣2
𝑔3

𝛾/𝜌 = 1, (S-15)

which describes an elliptical wavefront. This elliptical wavefront has also been revealed by 

Rouze et al. (34) in the case of the Mooney-Rivlin material, where 2𝛽 = 𝛼 + 𝛾 always holds 

regardless of the stress level. However, for other constitutive models such as the Arruda–Boyce 

model, Rouze et al. (34) show that cusp structures in wavefront may emerge in isotropic materials 

when sufficiently large stress is applied. These cusps are usually induced by structural anisotropy 

of materials, as shown in Fig. S1.

For experiments where only the group velocities are available (which is not our case), it 

would be necessary to first calculate the phase velocities from the measured group velocities.
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Supplementary Note 3: Measurement of the lateral shear wave
speed

Weperformed two-dimensional Fourier transforms onFig. S4A to get the frequency-wavenumber

domain data, as shown in Fig. S4B. To identify the left-to-right (LR) shear waves, we performed

an inverse Fourier transform to the data in the first and third quadrants (and set the data points in

the second and fourth quadrants to zero), as shown in Fig. S4C. Similarly, the right-to-left (RL)

shear waves were obtained by inverse Fourier transform on the data in the second and fourth

quadrants (Fig. S4D).

We then performed Radon transformations to the spatiotemporal data to obtain the shear

wave group velocity. The Radon transform sums the intensity of pixels in a spatiotemporal map

along projections with different slopes (denoted by tanΘ) and intercepts. The optimal projection

is identified by the peak Radon sum (41). For the lateral shear waves, the six wavefronts induced

by the six ARF pushes are parallel, resulting in multiple peaks in the Radon sum (Figs. S4E and

F). Therefore, we summed the absolute values of the Radon sums obtained from the projections

with the same slopes (each column of the Radon sums), as shown in Figs. S4G and H. We

identified the maxima in Figs. S4G and H, respectively, to get the group velocities of the LR

and RL shear waves, i.e., ∼ | tan 67◦ |Δ𝑥
Δ𝑡
and ∼ | tan 113◦ |Δ𝑥

Δ𝑡
, respectively, where Δ𝑥 = 0.1 mm

and Δ𝑡 = 0.1 ms are the grid size of spatiotemporal maps. Finally we reported the average of

the two optical group velocities as the value of 𝑣𝑥 .
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Supplementary Note 4: Hydrogel sample characterization

The hydrogel consists of 10% polyvinyl alcohol (PVA), 3% cellulose and 87% deionized water

by weights. We dissolved the PVA powder (sigma Aldrich 341584, Shanghai, China) into

80◦C water. We then added cellulose powder (Sigma-Aldrich S3504, Shanghai, China) into the

solution and fully stirred the solution to get a suspension of the cellulose powder. The cellulose

particles act as ultrasonic scatterers to enhance the imaging contrast. We poured the suspension

into a square plastic box (length ∼ 30 cm, width ∼ 7 cm, and height ∼ 4 cm), and then cooled the

suspension to room temperature (∼ 20◦C) before putting it into a −20◦C freezer. We froze the

sample for 12 hours and then thawed it at room temperature for another 12 hours. The stiffness

of the sample can be tuned by the freezing/thawing (F/W) cycles (49). The hydrogel sample

used in this study underwent two F/W cycles.

We performed indentation tests (Fig. S5A) to characterize the viscoelastic properties of

the hydrogel sample. To get the long-term modulus, we performed three indentation tests

using a low loading rate (∼ 0.1 mm/s), as shown in Fig. S5B. The long-term shear modulus

𝜇∞ = 𝜇(𝑡 → +∞) can be obtained by fitting the loading curve with the formula

𝐹 =
16
9
𝜇∞𝑅

1/2ℎ3/2, (S-16)

where 𝑅 ≈ 7.5 mm is the radius of the indenter, 𝐹 is the force, and ℎ is the indentation depth. 

As shown in Fig. S5B, the best fitting gives 𝜇∞ = 8.6 ± 0.3 kPa. We then increased the loading 

rate (∼ 100 mm/s) and measured the stress relaxation when holding the indentation depth at ∼ 5 

mm. Figure S5C shows the normalized stress relaxation curve. We find the two-term Prony 

series with 𝑔1 = 0.07, 𝜏1 = 0.08 s, 𝑔2 = 0.05 and 𝜏2 = 2.05 s fits the stress relaxation data well. 

The total stress relaxation is small (𝑔1 + 𝑔2 ≈ 10%), indicating a weak viscosity of the hydrogel 

sample, which only introduces a ∼ 5% variation in shear wave speed over the frequency range

from ∼ 0.5 Hz (𝜏2
−1) to ∼ 12.5 Hz (𝜏1

−1).
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While the stress relaxation characterizes the viscoelasticity in the low frequency regime

(below ∼ 12.5 Hz), we further measured the surface wave phase velocity up to 800 Hz using

our ultrasound elastography system. In this measurement, we relied on a mechanical shaker

(SA-JZ002, Shiao, Jiangsu, China) to apply a surface pressure locally to generate harmonic

surface waves. The surface waves were acquired by the ultrasound transducer. We then

computed the wavelengths of the surface waves to get the phase velocity. As shown in Fig.

S5D, interestingly, we do not observe an increase in the speed, but instead a slight decrease. We

attribute this decrease to the slight stiffness gradient (softer at shallower locations) of the hydrogel

sample introduced by the fabrication process (54). Despite the slight material heterogeneity,

the dispersion relation suggests a weak dependence of the surface wave speed on the frequency,

indicating a weak viscosity of the hydrogel in the frequency range of 100 to 800 Hz.
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Supplementary Note 5: Acoustoelastic model for skeletal mus-
cle and the effect of viscoelasticity

Linear elastic parameters

To characterize the anisotropy of the skeletal muscle, we measured the shear wave group

velocities along different directions. Our main assumption is that the skeletal muscle can be

modeled as an incompressible transversely isotropic material due to a preferred direction of the

muscle fibers. Such a material has three independent elastic parameters, say 𝜇𝑇 , the transverse

shear modulus, 𝜇𝐿 , the longitudinal shear modulus, and 𝐸𝐿 , the longitudinal Young modulus.

We measured the horizontal shear wave speeds 𝑣𝑥 in the undeformed material at three

different orientations of the fibers with respect to the 𝑥 axis (0, 35, 90◦, see Figs. S4a-c) to get

𝑣0◦
𝑥 , 𝑣35◦

𝑥 , and 𝑣90◦
𝑥 . Then the three elastic parameters can be calculated by the formulas (51)

𝜇𝑇 = 𝜌(𝑣90◦
𝑥 )2

, 𝜇𝐿 = 𝜌(𝑣0◦
𝑥 )

2
, 𝐸𝐿 =

4
[
𝜌(𝑣35◦

𝑥 )2 − 𝜇𝐿
]

sin2 (2 × 35◦)
+ (4𝜇𝐿 − 𝜇𝑇 ). (S-17)

Figure S6 shows the statistical results for the shear wave speeds, which clearly point to the

mechanical anisotropy of the muscle. From the wave speeds we get 𝜇𝑇 ≈ 10.7 kPa, 𝜇𝐿 ≈ 22.4

kPa, and 𝐸𝐿 ≈ 40.1 kPa.

Acoustoelastic model for skeletal muscle

To model the acoustoelasticity of the skeletal muscle, we take the phenomenological model

proposed by Murphy (55),

𝑊 =
𝜇𝑇

2𝑐2
[𝑒𝑐2 (𝐼1−3) − 1] + 𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿

2𝑐4
[𝑒𝑐4 (

√
𝐼4−3) − 1] + 𝜇𝑇 − 𝜇𝐿

2
(2𝐼4 − 𝐼5 − 1), (S-18)

where 𝑐2 and 𝑐4 are non-dimensional strain-hardening parameters, and the strain invariants are

defined as

𝐼1 = tr𝑪, 𝐼2 = 1
2 [𝐼

2
1 − tr (𝑪2)], 𝐼4 = 𝑴 · (𝑪𝑴), 𝐼5 = 𝑴 · (𝑪2𝑴). (S-19)
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This model reduces to the neo-Hookean model,

𝑊 = 𝜇(𝐼1 − 3), (S-20)

when we take 𝜇𝑇 = 𝜇𝐿 = 1
3𝐸𝐿 = 𝜇 and 𝑐2 = 0.

Inserting (S-18) into (S-2) we obtain the expressions for 𝛼, 𝛽, and 𝛾, which determine the

shear wave speed according to Eq. (1) in the main text. When 𝑴 = (1, 0, 0), we find

𝜌𝑣2 = 𝜇𝑇𝜆
2 sin2 𝜃𝑒𝑐2 (𝐼1−3) + 𝜆−1 cos2 𝜃

[
𝜇𝑇𝑒

𝑐2 (𝐼1−3) + (𝜇𝑇 − 𝜇𝐿) (2 − 3𝜆−1)
]

+ 𝜆−1 cos2 𝜃
[
(𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿)𝑒𝑐4 (𝜆−1)2 (1 − 𝜆−1)

]
,

(S-21)

where 𝐼1 = 𝜆2+2𝜆−1, and 𝜆 is the stretch ratio along the direction of tension, obtained by solving

𝜎1 = 𝜆

[
𝜇𝑇𝜆𝑒

𝑐2 (𝐼1−3) + (𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿) (𝜆 − 1)𝑒𝑐4 (𝜆−1)2 + 2(𝜇𝑇 − 𝜇𝐿) (𝜆 − 𝜆3)
]

− 𝜇𝑇

𝜆
𝑒𝑐2 (𝐼1−3) ,

(S-22)

given the principal stress 𝜎1. Figure S1 shows the typical dependence of the wave speed on 

direction when the material is subject to a uni-axial tension.

Inserting 𝜇𝑇 = 10.7 kPa, 𝜇𝐿 = 22.4 kPa, and 𝐸𝐿 = 40.1 kPa into Eq. (S-21), and then using 

this equation to fit 𝑣 𝑥 ( 𝜃 =  0) and 𝑣 𝑧 ( 𝜃 =  𝜋/2) shown in F ig. 4d, we get 𝑐 2 ≈  3.5 and 𝑐 4 ≈  8. 

The fitting curves are shown in Fig. 4d of the main text.

Viscoelasticity of the skeletal muscle and its effect on shear wave propagation

The dispersion relation of the Rayleigh surface wave in the muscle sample was measured using 

the same setup as described in Note 4. Figure S4E shows the surface wave speeds measured 

along the muscle fiber. We fi t th e di spersion re lation wi th a on e-term Pr ony se ries, to  get 

𝑔1 ≈ 0.79 and 𝜏1 ≈ 0.49 ms.

To evaluate the effect of the viscoelasticity on the acoustoelastic imaging, we use the acousto-

visco-elastic model recently proposed by Berjamin and de Pascalis (46). For simplicity, we
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consider the quasi-linear viscoelasticity (QLV) theory with the neo-Hookean model (Eq. (S-20))

and a one-term Prony series. According to (46), the shear wave speed 𝑣𝑥 is a function of the

frequency 𝑓 ,

𝑣𝑥 =

√︄
2(1 + 𝐷2)

1 +
√

1 + 𝐷2

√︄
|Re 𝜇𝑥 |
𝜌

(S-23)

where

𝐷 = 𝐷0
2ΩΩ0

Ω2 +Ω2
0
, Ω = 2𝜋 𝑓 𝜏1,

𝐷0 =
𝑔

2Ω0

𝜇̄v
𝑥

𝜇̄v
𝑥 + (1 − 𝑔) [𝑇e

d ]11
, Ω2

0 = (1 − 𝑔)
𝜇̄v
𝑥 + [𝑇e

d ]11

𝜇̄v
𝑥 + (1 − 𝑔) [𝑇e

d ]11
,

(S-24)

and

𝜇𝑥 = (1 − 𝑔1) [𝑇e
d ]11 + (1 − 𝑔1

1 + 𝑖𝜔𝜏1
) 𝜇̄v

𝑥 . (S-25)

In (S-24) and (S-25), 𝑖 =
√
−1,

[𝑇e
d ]11 = 𝜇(𝜆2 − 𝐼1/3), 𝜇̄v

𝑥 = 𝜇𝐼1/3. (S-26)

and 𝜆 is the stretch ratio, which can be determined from the stress 𝜎1 by solving the cubic

𝜆3 − 𝜎1
𝜇∞
𝜆 − 1 = 0, (S-27)

where 𝜇∞ = 𝜇(∞) = (1 − 𝑔1)𝜇0 is the long-term shear modulus and 𝐼1 = 𝜆2 + 2𝜆−1. To get 𝑣𝑧, 

we follow the same procedure, replacing 𝜆 with 𝜆−1/2 in (S-26).

In Fig. S7, we plot the dispersion relations of 𝑣𝑥 and 𝑣𝑧 with 𝜇∞ = 8.4 kPa, 𝑔1 = 0.79 and 

𝜏1 = 0.49 ms. Then we use Eq. (2) in the main text to derive the stress 𝜎1. As shown in Fig. 

S7B, the stress is underestimated when the viscoelasticity comes into play.
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Fig. S1: Effect of the uniaxial stress on the shear wave speeds. (A) neo-Hookean material
with shear modulus 𝜇 = 36 kPa, subject to uniaxial stress 𝜎1 = 0.3𝜇. (B) Transversely isotropic
material with material parameters 𝜇𝑇 = 9 kPa, 𝜇𝐿 = 25 kPa, 𝐸𝐿 = 216 kPa, 𝑐1 = 1, 𝑐2 = 10, and
𝜎1/𝐸𝐿 = 0.1. The fiber direction is aligned with 𝑥1. (i) and (ii) depict phase and group speeds,
respectively, showing that they are the same along the principal axes. Solid lines: prestressed.
Dashed lines: stress-free.
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Fig. S2: Imaging protocol and finite element simulation of shear wave excitation. (A)
Imaging protocol. Six ARFs are applied by successively focusing the ultrasound beam along
the horizontal direction. The duration of each ARF is ∼ 0.1 ms. After the excitation (∼ 0.6
ms), the transducer is switched to perform plane wave (PW) imaging (unfocused beam, duration
5 ms) at a frame rate of 10 kHz. Ten successive measurements (∼ 56 ms) are performed and
then the average of the measurements is taken to improve the signal-to-noise ratio. (B) Acoustic
pressure of the focused ultrasound beam measured within the focal plane (∼ 13 mm away from
the transducer). (C) Distribution of the pressure along 𝑥 axis. Half width at half maximum
(HWHM) is approximately ∼ 0.25 mm, in agreement with the ultrasound wavelength ∼ 0.23
mm. (D) Finite element simulations showing the six ARFs successively applied to excite the
shear waves. The time when the PW imaging starts is set to 0. The dashed square shows the
region of interest where the wave propagation is measured by the PW imaging.
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Fig. S3: Finite element simulation of the shear wave excitation by programmed acoustic
radiation forces in anisotropic materials. (A) The snapshots of the shear wave propagation,
which suggest the SV shear waves are primarily excited. The maps depict the vertical par-
ticle velocity fields. (B) and (C) Spatiotemporal data for the horizontal and vertical waves,
respectively. The speeds measured along the two directions are identical, ∼ 4.7 m/s (

√︁
𝜇𝐿/𝜌),

indicating the SV shear waves are measured in both directions. The material is incompressible
transversely isotropic. The fiber direction is aligned with 𝑥. The material parameters used in the
simulation are 𝜇𝑇 = 10.7 kPa, 𝜇𝐿 = 22.4 kPa, 𝐸𝐿 = 40.1 kPa, and 𝜌 = 1000 kg/m3 (see Note 5
for definitions of the material parameters).
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Fig. S4: Measurement of the lateral shear wave speed 𝑣𝑥 . (A) Spatiotemporal map of the 
shear waves propagating along the horizontal direction (𝑥 axis). (B) Fourier transformation of 
the spatiotemporal data. (C) Inverse Fourier transformation of the data in the first and third 
quadrants. The right-to-left (RL) waves have been filtered out in this map. (D) Inverse Fourier 
transformation of the data in the second and fourth quadrants. The left-to-right (LR) waves have 
been filtered out in this map. (E) and (F) The Radon transformations of (C) and (D). Then We 
sum the absolute values of the data points in (E) and (F) along each column to get the solid lines 
in (G) and (H), respectively. The peaks identified on the lines give the optimal phase velocities 
of the LR and RL waves.
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Fig. S5: Mechanical characterization of the hydrogel phantom at rest. (A) Photography
showing the indentation tests on the hydrogel phantom. (B) Load-displacement curve of the
indentation experiments obtained from the loading process with a low loading rate (∼ 0.1 mm/s).
Error bar, standard deviations over five measurements. (C) Normalized stress relaxation curve.
Error bar: standard deviations over ten measurements. (D) Phase velocity of the surface waves.
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Fig. S6: Mechanical characterization of the skeletal muscle at rest. (A)-(C) Grayscale
ultrasound images of the skeletal muscle. Red arrows in (A) and (C) indicate some of the
parallel muscle fibers. For (B) the sample is tilted at ∼ 35◦. The schematics underneath each
image show the orientations of the muscle fibers. For all three cases, the horizontal shear wave
group velocities 𝑣𝑥 are measured. Therefore, the angles between the shear wave propagation
direction and muscle fibers are (A) 0◦, (B) 35◦, and (C) 90◦. (D) Statistical results (five
independent measurements) for the horizontal shear wave group velocities. (E) Dispersion
relation of the surface waves (0◦). Markers, experiments. Dashed line, fitting curve obtained
using one-term Prony series with 𝑔1 = 0.79 and 𝜏1 = 0.49 ms.

17



2

3

4

5

6

7

8

0 500 1000
Frequency (Hz) Frequency (Hz)

M
ax

im
um

 u
nd

er
es

tim
at

io
n

g1

P
ha

se
 v

el
oc

ity
 (

m
/s

)

S
tr

es
s 

(k
P

a)

vx
vz
Stress-free

0

1

2

3

4

5

6

0 500 1000

(150, 2.6)

A B C

0 0.5 10.25 0.75
0

0.25

0.5

0.75

1

Fig. S7: Effect of viscoelasticity on the acoustoelastic imaging. (A) Dispersion relations of 𝑣𝑥
and 𝑣𝑧 when a tensile stress 𝜎1 = 4.2 kPa is applied. The dashed curve is the dispersion relation
in the stress free state. The Quasi-Linear Viscoelastic material model used to produce this figure
relies on the neo-Hookean model with 𝜇0 = 40 kPa and the one-term Prony series with 𝑔1 = 0.79
and 𝜏 = 0.49ms. (B) The stresses derived from 𝑣𝑥 and 𝑣𝑧 at different frequencies. The minimum
stress is 2.6 kPa, indicating an underestimation of ∼ 38%. (C) The underestimation of the stress
as a function of 𝑔1.
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Movie S1 (separate file). Amovie given by finite element (FE) simulations compares the shear

waves generated by programmed acoustic radiation force (ARF) and the conventional single

ARF. (A) FE results of the shear waves generated by the programmed ARF; (B) FE results of

the shear waves gener-ated by a single ARF.

Movie S2 (separate file). A movie compares the shear waves generated in experiments by the

programmed ARF and the conventional single ARF. (A) Experimental measurements of the

shear waves generated by the programmed ARF; (B) Experimental measurements of the shear

waves generated by a single ARF.
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