
Supplementary Materials
for

Non-destructive mapping of stress and strain in soft thin films through sound waves

Guo-Yang Li
Harvard Medical School and Wellman Center for Photomedicine,

Massachusetts General Hospital, Boston, MA 02114, United States.

Artur L Gower
Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom

Michel Destrade
School of Mathematical and Statistical Sciences, NUI Galway, Galway, Ireland;
Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and

Department of Engineering Mechanics, Zhejiang University, Hangzhou, PR China

Seok-Hyun Yun
Harvard Medical School and Wellman Center for Photomedicine,

Massachusetts General Hospital, Boston, MA, USA



S2

SUPPLEMENTARY NOTE 1: LAMB WAVES IN A STRESSED FILM

Consider a plate with edges parallel to the Cartesian coordinates (x1, x2, x3), where −h ≤ x3 ≤ h so that the plate’s
current thickness is 2h, as illustrated in Supplementary Figure 1(a). Aligned with this axes are the principal stress
σ1, σ2, σ3, and we assume the faces are stress free, so that σ3 = 0.

The motion of a Lamb wave travelling along x1 axis with speed v and wavenumber k in an elastic incompressible
plate is in general governed by the following dispersion equation [1],(

tanh s1kh

tanh s2kh

)±1
=

s2(s21 + 1)2

s1(s22 + 1))2
, (S.1)

for symmetric (+1 exponent) and anti-symmetric modes (-1 exponent), and where s21, s22 are the roots of the quadratic

γs4 − (2β − ρv2)s2 + α− ρv2 = 0. (S.2)

Here α, β and γ are instantaneous elastic moduli, which satisfy

α− γ = σ1, α/γ = λ21/λ
2
3, (S.3)

independent of the materials properties. When the stress are due to an elastic deformation with the pre-stretches λ1,
λ2, λ3 along (x1, x2, x3), such that λ1λ2λ3 = 1 because of incompressibility, then

α =
σ1 − σ3
λ21 − λ23

λ21, γ =
σ1 − σ3
λ21 − λ23

λ23, 2β = λ21
∂2W

∂λ21
− 2λ1λ3

∂2W

∂λ1∂λ3
+ λ23

∂2W

∂λ23
+ 2λ1λ3

λ1
∂W
∂λ3
− λ3 ∂W∂λ1

λ21 − λ23
, (S.4)

where W = W (λ1λ2λ3) is the strain energy density, and the identities (S.3) follow immediately. Note that they also
hold when the origin of the pre-stress is not known [2, 3].
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Supplementary Figure 1. (a) Geometry of the stressed film. (b) Master dispersion curves for the fundamental modes, where

ηA0 =
√

(α− ρv2)/γ, ηS0 =
√

(ρv2 − α)/γ when kh ≤ 3.99 and ηS0 =
√

(α− ρv2)/γ when kh ≥ 3.99.

Now we consider the strain energy of isotropic incompressible third-order elasticity,

W = µ trE2 + (A/3)trE3, (S.5)

where E is the Green-Lagrange strain tensor, µ is the Lamé modulus of linear elasticity (µ = E/3, where E is Young’s
modulus) and A is the Landau constant of third-order elasticity (also known as n in the expansion of Murnaghan).
This strain energy is valid up to moderate strain [4]. It can be checked by hand, or with a Computer Algebra System,
that when taking a Taylor expansions for small elongations λi − 1, we obtain the identity[4] 2β = α + γ, which
substituted into (S.2) leads to

s21 =
α− ρv2

γ
, s22 = 1, (S.6)

and the dispersion equation takes the compact form (Eq. (1) in the main text),

4s1

(
tanh s1 kh

tanh kh

)±1
= (1 + s21)2. (S.7)
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For the fundamental A0 mode, the speed is always subsonic. We define ηA0 =
√

(α− ρv2)/γ, and for each value of
kh we solve

4ηA0
tanh ηA0 kh

tanh kh
= (1 + η2A0)2, (S.8)

numerically for ηA0, which leads to the A0 plot on Supplementary Figure 1(b). It starts at ηA0 = 1 as kh → 0 and
decreases toward 0.2956 (the root of the cubic x3 + x2 + 3x− 1 = 0) as kh→∞.

For the S0 modes in the low kh regime, the wave is supersonic and s21 < 0. We define ηS0 =
√

(ρv2 − α)/γ and for
each value of kh we solve

4ηS0
tanh kh

tan ηS0 kh
= (1− η2S0)2, (S.9)

numerically for ηS0, which leads to the first branch of the S0 plot on Supplementary Figure 1(b). This equation is valid

for kh ≤ 3.9973 (the root of the equation 4 tanhx = x). Finally for kh ≥ 3.9973, we define ηS0 as ηS0 =
√

(α− ρv2)/γ,
and we solve

4ηS0
tanh kh

tanh ηS0 kh
= (1 + η2S0)2, (S.10)

numerically for ηS0, which leads to the second branch of the S0 plot in Supplementary Figure 1(b).
In a material with significant structural anisotropy (not only strain-induced anisotropy), potentially due to the

presence of aligned collagen or fibers, the propagation and wave speed of the Lamb waves are modified accordingly.
In that case the strain energy (S.5) is no longer valid. However, our method could potentially be extended to this
scenario, or at least to certain special cases of anisotropy.
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SUPPLEMENTARY NOTE 2: SENSITIVITY ANALYSIS

Here we demonstrate how sensitive our prediction is to the stress σ1 when considering small errors in our mea-
surements. We focus on the sensitively analysis for the anti-symmetric mode A0, as the results for the S0 mode are
analogous.

For the analysis, assume for simplicity that for this mode we measure only two wave speeds v1 and v2, corresponding
to two different wavenumbers k1 and k2, respectively. We define η1 =

√
(α− ρv21)/γ and η2 =

√
(α− ρv22)/γ, which

we can solve for α and γ, and substitute into (S.3) to obtain

σ1 = 1
2 (ρv21 + ρv22) + 1

2 (ρv21 − ρv22)F, where F =
η21 + η22 − 2

η21 − η22
. (S.11)

There are several potential sources of errors in using this equation to predict the stress, coming from the error in
measuring the wave speeds and from the error in estimating the (non-dimensional) wavenumbers k1h and k2h. We
investigate the effect of these errors separately.

First we assume there is an error in measuring the wave speeds, which we call ρδv21 and ρδv22 ; the resulting error in
the stress δσ1, according to (S.11) is

δσ1 = 1
2ρδv

2
1(1 + F ) + 1

2ρδv
2
2(1− F ), so that

|δσ1|
ρ|δv2|

≤ 1
2 |1 + F |+ 1

2 |1− F |. (S.12)

Here we assumed that δv1 and δv2 are random and uncorrelated, and used |δv2| to represent the maximum error in
the squared velocities. We define c1 = 1

2 |1 + F |+ 1
2 |1− F | and plot this quantity in Supplementary Figure 2(c).

Next, we assume the wave speeds have been measured correctly, but that there is an error in estimating the
wavenumbers, which leads to

δσ1 = 1
2 (ρv21 − ρv22)

[
∂F

∂η1
δη1 +

∂F

∂η2
δη2

]
. (S.13)

Then, as we assume the wave speeds were measured accurately, we can use the exact relation ρv21 − ρv22 = γ(η22 − η21)
to rewrite this equation in the form

δσ1 = γ
δη22(1− η21)− δη21(1− η22)

η21 − η22
. (S.14)

For third-order elasticity (moderate strains) we have γ ∼ µ, the initial shear modulus, which we use below. Any
error committed when calculating η1 and η2 will be a result of an error in evaluating k1h and k2h, as shown by
equation (S.8). Hence we can write

δη21 =
∂η21

∂(k1h)
δ(k1h), δη22 =

∂η22
∂(k2h)

δ(k2h). (S.15)

Now there are two ways to commit the errors δ(k1h) and δ(k2h). The first is to miscalculate the frequencies k1 and
k2, which results in δ(k1h) = hδk1 and δ(k2h) = hδk2, in which case we can assume the errors are uncorrelated and
obtain

|δσ1|
µ|δk|h

≤
∣∣∣∣ ∂η21
∂(k1h)

∣∣∣∣ |1− η21 ||η21 − η22 |
+

∣∣∣∣ ∂η22
∂(k2h)

∣∣∣∣ |1− η22 ||η21 − η22 |
. (S.16)

Note that |σ1| < µ for moderate strains, so that the right hand-side is typically smaller than the relative error of the
stress. We call c2 the right hand side of the above inequality and plot it in Supplementary Figure 2(b).

The second way is to miscalculate the film depth h, which results in δ(hk1) = k1δh and δ(hk2) = k2δh, from which
we obtain

|δσ1|
µ|δh/h|

≤ 1

|η21 − η22 |

∣∣∣∣ ∂η21
∂(k1h)

k1h(1− η21)− ∂η22
∂(k2h)

k2h(1− η22)

∣∣∣∣ . (S.17)

We call c3 the right hand side of this inequality and plot it in Supplementary Figure 2(a).
To summarise, our expected in error in predicting the stress, denoted by δσ1, is such that

|δσ1|
µ

< c1
|ρδv2|
µ

+ c2|δk|h+ c3
|δh|
h
, (S.18)
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Supplementary Figure 2. The graphs show the sensitivity of our prediction of the stress, given by (S.3) due different sources
of potential error. In all the figures, it is assumed that the phase speeds v1 and v2 of an anti-symmetric Lamb wave are
measured at wavenumbers k1 and k2, respectively. For every plot, the white regions have errors larger than the values shown
in the accompanying legend. Supplementary 2(a) shows how relative errors in the squared speeds v21 and v22 affect the stress.
Supplementary Figure 2(b) shows how errors in estimating hk1 and hk2 affect the stress prediction. Supplementary Figure
2(c) shows how errors in estimating the depth h magnify, or decrease, the errors in predicting the stress. Finally, the values in
Supplementary Figure 2(d) times µ/λ give the error in the stress due to compressibility. For example, if µ/λ = 1, and µ = 0.02
GPa, then we would expect an error of 0.016 GPa in the stress when k1h = k2h = 4.

where δh, δk, δv, are the measurement errors in the sample depth h, the frequency k, and the wave speed v,
respectively. The coefficients c1, c2, c3 depend only on the two frequencies used for the measurement, k1 and k2, and
are independent of the material parameters.

For an example, let us consider the measurements made on the rubber membrane, as shown in Figure 1 of the
main paper. Its thickness is 2h ' 0.5 mm. In the case of N = 0 (no weights), at frequency f1 = 2 kHz, the speed
is v1 ' 7.5 m·s−1, so that k1h = 2πf1h/v1 = 0.42; at f2 = 16 kHz the speed is v2 ' 13.4 m·s−1, so that k2h = 1.9.
For these values of k1h and k2h we find from Supplementary Figure 2 that c2 ∼ 0.5 and c3 ∼ 0.3. The wavenumber
measurement error of our optical coherence tomography (OCT) system is δk/k ∼ 0.1%, see Supplementary Note 5.
The thickness measurement error δh/h ∼ 3% is estimated from the error bars of the thickness, see Supplementary
Figure 12 (note that it is because the thickness of the sample is not uniform, not because of the spatial resolution of
OCT, which is about 0.018 mm.) Therefore, we expect a prediction error |δσ1|/µ < 1% (for this calculation, we only
included the c2 and c3 coefficients, because instead of measuring the speed directly, we calculated it by the formula
v = 2πf/k.)
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SUPPLEMENTARY NOTE 3: ALMOST INCOMPRESSIBLE MATERIALS

Our analysis in Section requires that the material be incompressible. Here we show what errors to expect for
nearly-incompressible materials.

The equations governing Lamb waves in compressible solids are given by Ogden and Roxburgh [1]. Again, we
specialise to third-order elasticity. Then, to take the limit of near-incompressibility, we follow a method used by
Shams et al. [4], which in our case leads to taking a series expansion for small µ/λ, where µ and λ are the Lamé
constants of linear elasticity. To simplify, and be consistent with third-order elasticity [5], we also consider the strain
(or the stress) to be small. The results are

ρv2A = γηA + α+ 2(µ2/λ)FA(kh), ρv2S = α− γηS + 2(µ2/λ)FS(kh), (S.19)

for the anti-symmetric and symmetric modes, respectively. Here, the terms FA(kh) and FS(kh) depend on kh only;
for example,

FA(kh) =
(S2 − 2kh)η2A(1− η2A)(1 + η2A)2

S(−4C + khS)− 2((5 + 3C2)kh− 2S2)η2A + 6S(2C + khS)η4A + 4khS2η6A + khS2η8A
, (S.20)

where S = sinh(kh), C = cosh(kh), S2 = sinh(2kh), and C2 = cosh(2kh). Both FA and FS are shown in Supplemen-
tary Figure 3.

To investigate the error induced by small compressibility, we use (S.12) together with the above to arrive at

|δσ1|
µ

=
µ

λ
|FA(k1h)(1 + F ) + FA(k2h)(1− F )| , (S.21)

with F given in (S.11).
When the material is only slightly compressible, µ/λ � 1 and the error is small. However, for more compressible

materials, µ/λ is not small; hence for steel [5], µ/λ ' 0.8. The numerical values of the right hand-side in this equation
are shown in Supplementary Figure 2(d).
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Supplementary Figure 3. Variation of the terms FA and FS with kh. When FS or FA is small, the Lamb wave speed is
insensitive to the material compressibility, and conversely when FS or FA is large.
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SUPPLEMENTARY NOTE 4: M-B SCAN WITH OPTICAL COHERENCE TOMOGRAPHY
TO MEASURE LAMB WAVE PROPAGATION

To study and measure Lamb wave propagation, the OCT system works in a M-B scan mode, which is depicted
in Supplementary Figure 4. The laser beam scans synchronously with the stimulus signal sent to the PZT. At each
lateral location, we acquire ∼ 350 A lines (M scan) at a sampling rate of ∼ 43 kHz. Then the laser beam moves to
the next localisation (B scan). In total 96 lateral locations are measured. The vibration acquired from each M scan
is Fourier-transformed to obtain the amplitude A and phase ϕ, i.e., u3(t) = Aei(ωt+ϕ). Finally we report the real and
imaginary parts of the displacement, A cos (ωt+ ϕ) and A sin (ωt+ ϕ) , as shown in Figures 5(b) and (d) of the main
text.

M1 M2 M3 M96
...

OCT beam
position

Displacement
Aei(ωt + φ) 

Stimulus
Signal

A-line ...
~350 A lines

... ... ...

Timeline

Supplementary Figure 4. Schematic of the M-B scan.
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SUPPLEMENTARY NOTE 5: SENSITIVITY IN MEASURING THE WAVENUMBER USING OCT

The standard deviation in the measurement of the vibration amplitude A via a single A-line scan, denoted by δA,
is given by the optical signal-to-noise ratio (SNR) [6]: δA = λ0/(4πn0

√
SNR), where λ0 is the optical wavelength

(∼ 1280 nm) and n0 is the refractive index (∼ 1.4). At the surface of the sample we typically get SNR ≈ 40 dB.

This sensitivity is improved by a factor 1/
√
M upon averaging of M A-lines. The elastic wave profile is obtained by

measuring the displacement at N locations along the propagation direction and then Fourier-transformed to determine
its wavenumber k. When the beam scan length covers ∼ 3 wavelengths, we find that δk, the standard deviation error
of the wavenumber, is given by δk/k ≈ δA/(A

√
MN). With ∆A = 20 nm (see Figure 5(d) of the main text), M = 350,

and N = 96, we obtain δk/k ≈ 0.1%.



S9

SUPPLEMENTARY NOTE 6: HIGH-ORDER LAMB WAVE MODES
EXCITED AT HIGH-FREQUENCY RANGE

When the excitation frequency increases, high-order modes are excited by the probe. Supplementary Figure 5 shows
the dispersion relations of the rubber film in the unstressed state. Besides the A0 mode, other wave modes that can
be measured from the experiments are also reported. By comparing with the Lamb wave model, it is easy to identify
these wave modes as the S0 and A1 modes.
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Supplementary Figure 5. Dispersion relations of the different Lamb wave modes (A0, S0 and A1) and comparison with
theoretical curves. The theoretical curves are computed using the shear modulus obtained from the tensile test.
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SUPPLEMENTARY NOTE 7: MEASURING α AND γ TO DEDUCE THE STRESS AND STRAIN

For the fundamental A0 mode, we have ρv2 = α−γη2A0. Thus, we simply need to measure v at different frequencies:
then for each frequency we have a value of kh, or equivalently, a corresponding value of η2A0, found by solving (S.8).
Then by linear curve fitting we deduce α (the intercept) and γ (the opposite of the slope) and thus σ1 and λ1 from
(S.3).

Supplementary Figure 6 shows the linear regression when the uni-axial stress is due to N = 5 weights, from which
we get α ' 314.3 kPa and ' 147.2 kPa. According to Eq. (S.3), the stress σ1 is 167.1 kPa and the stretch λ1 is 1.29,
which agrees well with the applied stress 162.1 kPa and stretch 1.31.

0 0.2 0.4 0.6 0.8 1

Exp
Fit

η

ρv
2  

(k
P

a)
y = -147.2x + 314.3
r2 ~ 0.998

300

250

200

150

A0
2

Supplementary Figure 6. Representative curve fitting to identify α and γ. Here N = 5 weights added. The linear fitting of
ρv2 to η2A0 gives α ' 314.3 kPa and γ ' 147.2 kPa (r2 = 0.998).
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SUPPLEMENTARY NOTE 8: LAMB WAVES TRAVELING
PERPENDICULAR TO THE UNIAXIAL STRESS

The analysis for the Lamb wave traveling along x2 (see Supplementary Figure 7) is the same as that for the wave
along x1. It yields the elastic moduli α′ and γ′, say, which give

α′ − γ′ = σ2, α′/γ′ = λ22/λ
2
3. (S.22)

For a general biaxial stress state, we solve Eqs. (S.3) and (S.22) to get the stretch ratios λ1 and λ2 (recalling that

λ1λ2λ3 = 1). In our experiments, the rubber film was uni-axially stretched (λ2 = λ3 = λ
−1/2
1 ), and we expect α′ = γ′

and σ2 = 0.
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Supplementary Figure 7. Dispersion relations of the Lamb waves traveling perpendicular to the uniaxial stress. The phase
velocities decrease when the stress increases. Here we find that |σ2| < 4 kPa, which is indeed almost zero compared to σ1.
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SUPPLEMENTARY NOTE 9: TENSILE TEST OF THE RUBBER FILM

Supplementary Figure 8 shows the tensile test and the fitting curve. The infinitesimal shear modulus µ ' 180 kPa
is obtained by fitting the initial stage (stretch ratio < 1.07) of the stretch-stress curve. To fit the whole curve we use
the Mooney-Rivlin model W = C10(λ21 +λ22 +λ23−3) +C01(λ21λ

2
2 +λ22λ

2
3 +λ23λ

2
1−3), with C10 ' 51 kPa and C01 ' 39

kPa. Then we recall that the Mooney-Rivlin model is equivalent, at the same level of approximation, to the general
model of third-order elasticity (S.5), with the connections [7] µ = 2(C10 + C01) and A = −8(C10 + 2C01), or here,
µ = 180 kPa, A = −1, 302 kPa.

These material parameters are used in the main text to produce theoretical dispersion curves and confirm the match
with the experimental data, although ultimately they are not needed for our stress measurement method through
OCT imaging.

Stretch ratio

Exp
Fit

T
ru

e 
st

re
ss

 (
kP

a)

0

50

100

150

200

250

300

350

1 1.2 1.4 1.6 1.8

Supplementary Figure 8. Tensile test of the rubber film. Inset, photos of the undeformed and deformed sample. Scale bar,
5 mm.
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SUPPLEMENTARY NOTE 10: CHARACTERISATION OF THE BODHRÁN

To show that the tension can be reduced by wetting the inner side of the bodhrán skin, and so that the vibration
frequencies change, we used the experimental setup depicted in Supplementary Figure 9(a) to characterize the fun-
damental vibration frequencies of the dry and wet bodhrán. The bodhrán was beaten at its center every 10 seconds
and then the sound was measured with a cellphone using the Google Science Journal App. The cellphone was placed
about 10 cm away from the skin. As shown in Supplementary Figure 9(b), the fundamental vibration frequency was
∼ 84 Hz in the dry state. However, wetting the skin, as shown in Supplementary Figure 9(c), decreases the vibration
frequency to ∼ 36 Hz.
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Supplementary Figure 9. Vibration frequency of the bodhrán. (a) Schematic of the experiment. The bodhrán is beaten
every 10 seconds and then the sound intensity and frequency are measured by a cellphone. (b) Dry state. The fundamental
and second harmonic frequencies can be measured: ∼ 84 Hz and ∼ 155 Hz. (c) Wet state. The fundamental frequency drops
to ∼ 36 Hz.
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Supplementary Figure 10. Photos of the experimental setup. (a) Scanning laser of the OCT system. (b) and (c) show how
stress is applied to the film by a simple pulley/weight apparatus. (d) A zoomed-in view of (b) showing the sample and the
PZT that is used to drive the vibration of the probe.
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Supplementary Figure 11. Standard deviations of the experimental data shown in Figure 1(f) of the main text. Here, N
indicates the number of the weights.
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Supplementary Figure 12. Variation of the rubber sheet thickness (as tracked by OCT) with the stress, from N = 0 (stress-
free) to N = 6 weights of 20 g each. As expected, the thickness decreases as we increase the stress, due to the Poisson effect.
Error bars indicate standard deviations over five measurements performed at different locations of the sample.
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